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Outline

• Flag Algebras Introduction

• “Proof” of Mantel’s theorem

• Erdős Pentagon Problem and inducibility

• Crossing numbers

• ℓ2-norm in Turán type problems

• ε-similar triangles

• Small Ramsey numbers

We will not make it all the way....
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Inspirational Problem

• Let n be fixed number of vertices in a graph G .

• Assume G has m edges.

∈ [0,
(n
2

)
]

• What is the number of triangles in G?

∈ [0,
(n
3

)
]

edge is

triangle is

Liu, Pikhurko, Staden 2020 (144 pages)

Consider n → ∞.
# Edges = p

(n
2

)
# Triangles = t

(n
3

)
Now p, t ∈ [0, 1].

p

t

1
2

1

1

0

Upper bound p3/2 Kruskal-Katona 1964
Asymptotic lower bound by Razborov 2008
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Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic Logic 72
(2007), 1239–1282.
David P. Robbins Prize by AMS for Razborov in 2013 over
300 citations (on google)

Example
If density of edges is p, what is the minimum density of triangles?

• Designed to attack extremal problems.

• Works well if constraints as well as desired value can be computed by checking small
subgraphs (or average over small subgraphs).

• The results are for the limit as graphs get very large.
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Example extremal problem

Theorem (Mantel 1907)

Every n-vertex triangle-free graph contains at most 1
4n

2 edges.

Problem
Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

• local condition and global parameter (computable locally)

• threshold

• bound and extremal example

We will use colors for edges and non-edges.
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Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle,
i.e. # /

(n
3

)
.

The probability that three random vertices in G span a graph
isomorphic to a triangle with one red and two blue edges.

v

The probability that a random vertex other than v is connected to v
by a red edge, i.e., the red degree of v divided by n − 1.

+ =

1

Flags
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

+ + + = 1

Same kind as

+ = 1.
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

=
3

3
+

2

3
+

1

3
+

0

3

Expanded version:

P

( )
= P

(
|

)
· P
( )

+ P

(
|

)
· P
( )

+ · · ·

Law of total probability
9



Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

=

3

3

+
2

3
+

1

3

+
0

3

Expanded version:

P

( )
= P

(
|

)
· P
( )

+ P

(
|

)
· P
( )

+ · · ·

Law of total probability
9



Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

v
×

v
=

v

?
+ o(1) =

v
+

v
+ o(1)

v
×

v
=

1

2 v

?
+ o(1) =

1

2 v
+

1

2 v
+ o(1)

v

?
: The probability of choosing two different vertices . . .

v
×

v
: The probability that choosing two vertices u1, u2 other than v gives red

vu1 and blue vu2.

o(1) as n → ∞ (will be omitted on next slides)
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

1

3
=

1

n

∑
v∈V (G)

v

(
n

3

)
=

∑
v∈V (G)

v

(
n − 1

2

)
=

1

n

∑
v∈V (G)

v(
n

3

)
=

1

3

∑
v∈V (G)

v

(
n − 1

2

)
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Identities Summary

1 = + + +

=
3

3
+

2

3
+

1

3
+

0

3

v
×

v
=

v
+

v

v
×

v
=

1

2 v
+

1

2 v

1

3
=

1

n

∑
v∈V (G)

v
=

1

n

∑
v∈V (G)

v
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Example - Mantel’s Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most 1
4n

2 ≈ 1
2

(n
2

)
edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

0 ≤

1

n

∑
v

(
1− 2

v

)2

=
1

n

∑
v

(
1− 4

v
+ 4

v
+ 4

v

)

= 1− 4 +
4

3
+ 4

= 1− 2 − 2

3

≤ 1− 2

v
×

v
=

v
+

v
= 3 + 3

+

0 = 2 − 4
3 − 2

3
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Erdős Pentagon Problem

20



Pentagons in triangle-free graphs

Problem (Erdős, 83)

Is it true that a triangle-free graph on 5n vertices can contain at most n5 pentagons?

n

n n

n n

Theorem (Grzesik ’12 & Hatami, Hladký, Král’, Norin,
Razborov ’13)

For all n > n0 or 5|n , the balanced blow-up of C5 maximizes the number of C5s over
all triangle free graphs, and it is unique.

unless n < 5 or n = 8.
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Razborov ’13)

For all n > n0 or 5|n , the balanced blow-up of C5 maximizes the number of C5s over
all triangle free graphs, and it is unique.

unless n < 5 or n = 8.

22



Pentagons in triangle-free graphs

Problem (Erdős, 83)
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n

n n

n n

Theorem (Grzesik ’12 & Hatami, Hladký, Král’, Norin,
Razborov ’13 & L., Pfender ’18)

For all n > n0 or 5|n , the balanced blow-up of C5 maximizes the number of C5s over
all triangle free graphs, and it is unique unless n < 5 or n = 8.
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Extremal examples on 8 vertices
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Extensions of Pentagon Problem

Problem (Palmer, 2018)

Which Kr -free graph on n vertices contains the most pentagons?

K3 K4 K5 K6

vs
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Every C5 counts

Theorem (L., Murphy (2021))

For all r ≥ 3, the number of 5-cycles among Kr+1-free graphs is maximized by the
Turán’s graph Tr (n) for n sufficiently large.

n/3

n/3 n/3

n/3

T3(n)

n/4

n/4

n/4

n/4

n/4

T4(n)

n/5

n/5

n/5 n/5

n/5

n/5

T5(n)
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Every C5 counts

Theorem (L., Murphy (2021))

For all r ≥ 3, the number of 5-cycles among Kr+1-free graphs is maximized by the
Turán’s graph Tr (n) for n sufficiently large.

Flag Algebras formulation:

Maximize + + · + 2 · + 2 · + 4 · + 6 · + 12 ·

Subject to Kr+1 = 0

26



Maximizing Other Graphs in Kr-free

ex(n,#H,F ) := Maximum number of copies of H in F -free graph on n vertices.

T2(n) T3(n) T4(n) T5(n)

Theorem (Mantel (1907))

ex(n,#K2,K3) = |E (T2(n))|. Moreover, T2(n) is the unique extremal graph.

Theorem (Turán (1941))

ex(n,#K2,Kr+1) = |E (Tr (n))| for r ≥ 3, and Tr (n) is the unique extremal graph.

Theorem (Erdős-Stone (1946), Erdős-Simonovits (1966))

ex(n,#K2,F ) =
(
1− 1

χ(F )−1

)
n2

2 + o(n2).
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Maximizing Other Graphs in Kr-free

ex(n,#H,F ) := Maximum number of copies of H in F -free graph on n vertices.

T2(n) T3(n) T4(n) T5(n)

Theorem (Zykov (1949))

Let t ≤ r . ex(n,#Kt ,Kr+1) is maximized in Tr (n).

Theorem (Alon, Shikhelman (2015))

ex(n,#K3,C5) ≤ (1 + o(1))
√
3
2 n3/2

Recent results by Gerbner+Palmer, Ma+Qui, Qian+Xie+Ge, Murphy+Nir
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Maximizing Pentagons (Induced Version)

Maximize
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Maximizing Pentagons (Induced Version)

Maximize
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Maximizing Pentagons (Induced Version)

Maximize
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Results

Theorem (Balogh, Hu, L., Pfender, 2016)

The iterated blow-up of C5 maximizes the number of 5-cycles
on 5n vertices.

Theorem (L., Mattes, Pfender, 2023)

The iterated blow-up of C5 maximizes the number of 5-cycles
on n vertices. Except n = 8.

29



Fractalizers

A graph G is a fractalizer if the graph maximizing the number
of induced copies of G is an iterated blow-up of G .

Theorem (Fox, Huang, Lee 2015+, Yuster 2019)

Almost every graph is a fractalizer.

Can you find some? Other than Kn or Kn.

30
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Conjecture (Pippinger, Golumbic 1975)

Cycles, except 4-cycle, are fractalizers.

Theorem (L., Mattess, Pfender 2023)

5-cycle is almost a fractalizer; exception on 8 vertices.

Theorem (Blumenthal, Phillips, 2021+)

Net is a fractalizer if on 6k vertices.

Theorem (Mubayi, Razborov 2021)

Rainbow tournaments on at least 4 vertices are fractalizers.

Graph fractalizers need at least 8 vertices.
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Crossing numbers

Application to graph drawing.
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Crossing number

Turán 1945: In a forced labor camp,
prisoners transfer carts of bricks from
kilns to shipping yards.

When two tracks cross, cart is likely
to derail.

How to connect every kiln and
shipping yard that minimizes the
number of crossings?

Km,n is a complete bipartite graph with sizes m and n, K3,3 is above.
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For a graph G , cr(G ) is the crossing number.

Conjecture (Zarankiewicz 1954)

cr(Km,n) =

⌊
n
2

⌋⌊
(n−1)

2

⌋⌊
m
2

⌋⌊
(m−1)

2

⌋

Theorem (Norin, Zwols 2013)

cr(Km,n) ≥ 0.905

⌊
n

2

⌋⌊
(n − 1)

2

⌋⌊
m

2

⌋⌊
(m − 1)

2

⌋
for large m and n. (Zarankiewicz’s conjecture is 90.5% true) K6,6

80% Kleitman 1970
83% De Klerk, Maharry, Pasechnik, Richter, Salazar 2006
85.9% De Klerk, Pasechnik, Schrijver 2007
88.7% Brosch, Polak 2022+
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Rectilinear crossing number is with straight line drawing.

K6,6

Theorem (Balogh, L., Norin, Pfender, Salazar, Spiro 2023+)

Zarankiewicz’s conjecture is 91.1% true for large m and n.

Theorem (Balogh, L., Norin, Pfender, Salazar, Spiro 2023+)

Rectilinear version of the Zarankiewicz is 97.3% true for large m and n.
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K5,5,5
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K5,5,5
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K5,5,5
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K5,5,5
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For a graph G , cr(G ) is the rectilinear crossing number.

Conjecture

cr(Kn1,n2,n3) is minimized by K5,5,5

Theorem (Gethner, Hogben, L., Pfender, Ruiz, Young, ’17)

cr(Kn1,n2,n3) conjecture is 89% true for large n1, n2, and n3.

Problem
What about partite graphs with more parts?
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Anthony Hill
Orthogonal / Diagonal

Composition
1954

Hill considered crossing
number of complete graphs.

Conjecture (Hill 1962)

cr(Kn) =
1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
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Conjecture (Hill 1962)

cr(Kn) =
1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
Conjecture is true

• if n ≤ 12.

• 100% with various additional restrictions on the drawing

• 80% Kleitman 1970

• 83% De Klerk, Maharry, Pasechnik, Richter, Salazar 2006

• 85.9% De Klerk, Pasechnik, Schrijver 2007

• 90.5% Norin, Zwols 2013

• 91.1% Balogh, L., Norin, Pfender, Salazar, Spiro 2023

Theorem (Balogh, L., Salazar 2019)

Conjecture is 98.5% true.
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Tuán type result

K6,6

Theorem (Balogh, L., Norin, Pfender, Salazar, Spiro 2023+)

If KD
n,n is a drawing of Kn,n where no K3,4 induces exactly two crossings sharing one

vertex, then KD
n,n has at least n4/16 + o(n4) crossings. (100% True)
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How is it done?

For multipartite graphs

• Color vertices to indicate parts.

• For every {(a, b), (c , d)}, where a, b, c, d are vertices remember if edges ab and cd
cross or not.

• Necessary to generate all (combinatorial) embeddings of graphs on n vertices.

For complete graphs

• For every vertex remember clockwise order of its neighbors.

• Necessary to generate all (combinatorial) embeddings of graphs on n vertices.
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ℓ2-norm in Turán Type Problems

42



Hypergraph Setting

3-uniform hypergraphs have triples of vertices as edges.

One Edge, K 3
3 Complete hypergraph K 3

4
Fanno Plane

Turán’s Tetrahedron problem: Determine ex(n,#K 3
3 ,K

3
4 ) $500 reward by Erdős
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Turán’s Tetrahedron problem
Determine ex(n,#K 3

3 ,K
3
4 )

Asymptotic setting:

π(K 3
4 ) = lim

n→∞
ex(n,#K 3

3 ,K
3
4 )/

(
n

3

)
K 3
3 K 3

4

Theorem (Kostochka 1982, Brown 1983,
Fon-der-Flaass 1988, Frohmade 2008)

π(K 3
4 ) ≥ 5/9

Theorem (Baber 2012)

π(K 3
4 ) ≤ 0.5615

Theorem (Razborov 2010)

π(K 3
4 , few other graphs) = 5/9

n
3

n
3

n
3
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Co-degree vector

Let G be an n-vertex 3-uniform hypergraph

co-degree vector X ∈ Z(
n
2) is indexed by pairs u, v ∈ V (G )

Xu,v := # edges containing u and v .

u v

#edges =
1

3

∑
uv

Xuv =
1

3
||X ||1

New idea: Consider ∑
uv

X 2
uv = (||X ||2)2

1(n
2

)∑
uv u v

2

=
1

6
+

1

2
+
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Let Gn be H-free 3-uniform hypergraphs on n vertices.

σ(H) := lim
n→∞

max
G∈Gn

1

6
+

1

2
+

Theorem (Balogh, Clemen, L. 2022)

σ(K 3
4 ) =

1
3

n
3

n
3

n
3

Theorem (Balogh, Clemen, L. 2022)

σ(K 3
5 ) =

5
8

n
2

n
2

Any many others.

Future: Better exactness methods and other settings applications.
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ε-similar Triangles

47



Problem

Let T be a triangle and n ∈ N fixed.

(and ε > 0 fixed)

Which n points in R2 maximize the number of triangles similar to T?

T

T1 and T2 are ε-similar if their inner angles differ by at most ε.
(OK to move, scale, rotate, ε-perturb)
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Lower bound construction

Let T be a triangle and n ∈ N fixed. (and ε > 0 fixed)
Which n points in R2 maximize the number of triangles similar to T?

T

h(n,T , ε) := max # of ε-similar triangles to T , it is at least 1
4

(n
3

)
(1 + o(1)).
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Lower bound construction

Let T be a triangle and n ∈ N fixed. (and ε > 0 fixed)
Which n points in R2 maximize the number of triangles similar to T?

T

h(n,T , ε) := max # of ε-similar triangles to T , it is at least 1
4

(n
3

)
(1 + o(1)).
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Results

Theorem (Bárány and Füredi (2019))

For almost every triangle T there is an ε0 > 0 such that for all 0 < ε ≤ ε0,

h(n,T , ε) ≤ 0.25072

(
n

3

)
(1 + o(1)).

If T is equilateral, then h(n,T , ε) = 1
4

(n
3

)
(1 + o(1))

Theorem (Balogh, Clemen, L. (2022))

For almost every triangle T there is an ε0 > 0 such that for all 0 < ε ≤ ε0,

h(n,T , ε) =
1

4

(
n

3

)
(1 + o(1)).

h(n,T , ε) := max # of ε-similar triangles to T , it is at least 1
4

(n
3

)
(1 + o(1)).
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Let T and ε are given

• Fix n points in the plane.

• For every T ′ ε-similar to T , add a 3-edge

• Investigate the resulting hypergraph H

H has no subhypergaph in F = {K 3
4 , . . .}

T

Theorem (Balogh, Clemen, L. (2022))

F-free hypergraph has at most 1
4

(n
3

)
(1 + o(1)) edges.

All triangles?

T

Other Shapes? in Rd?

T
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Small Ramsey numbers
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Definition
R(G1,G2, . . . ,Gk) is the smallest integer n such that any k-edge coloring of Kn

contains a copy of Gi in color i for some 1 ≤ i ≤ k.

R(K3,K3) > 5 R(K3,K3) ≤ 6
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Theorem (Ramsey 1930)

R(Km,Kn) is finite.

R(G1, . . . ,Gk) is finite

Questions:

• study how R(G1, . . . ,Gk) grows if G1, . . . ,Gk grow (large)

• study R(G1, . . . ,Gk) for fixed G1, . . . ,Gk (small)

Radziszowski - Small Ramsey Numbers
Electronic Journal of Combinatorics - Survey
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[Erdős] Suppose aliens invade the
earth and threaten to obliterate it
in a year’s time unless human beings
can find the Ramsey number for red
five and blue five. We could marshal
the world’s best minds and fastest
computers, and within a year we
could probably calculate the value.
If the aliens demanded the Ramsey
number for red six and blue six, how-
ever, we would have no choice but
to launch a preemptive attack.

3/13/15, 8:40 AM

Page 1 of 1file:///Users/lidicky/Desktop/atlanta%20LS/fig-ufo-attack.svg
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Take any graph G with no and .

1
25

1
25

1
25

1
25

1
25

If G has k vertices, then the blow-up has density of non-edges ≥ 1
k .

If any blow-up has density of non-edges ≥ 1
k then G has ≤ k vertices.
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New upper bounds (L., Pfender 2021)
Problem Lower New upper Old upper

R(K−
4 ,K−

8 ) 29 32 38
R(K−

4 ,K−
9 ) 31 46 53

R(K4,K
−
7 ) 37 49 52

R(K−
5 ,K−

6 ) 31 38 39
R(K−

5 ,K−
7 ) 40 65 66

R(K5,K
−
6 ) 43 62 66

R(K5,K
−
7 ) 58 102 110

R(K−
6 ,K−

7 ) 59 124 135
R(K7,K

−
4 ) 28 29 30

R(K8,K
−
4 ) 29 39 42

R(K8,C5) 29 29 33
R(K9,C5) 33 36
R(K9,C6) 41 41
R(K9,C7) 49 58

R(K2,2,2,K2,2,2) 30 32 60?
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Problem Lower New upper Old upper

R(K3,4,K2,5) 20 21
R(K3,4,K3,3) 20 25
R(K3,4,K3,4) 25 30

R(K3,5,K1,6) 17 17
R(K3,5,K2,4) 16 20
R(K3,5,K2,5) 21 23
R(K3,5,K3,3) 24 28
R(K3,5,K3,4) 29 33
R(K3,5,K3,5) 30 33 38
R(K4,4,K4,4) 30 49 62

R(W7,W4) 21
R(W7,W5) 16
R(W7,W6) 19

R(B4,B5) 17 19 20
R(B3,B6) 17 19 22
R(B5,B6) 22 24 26
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Problem Lower New upper Old upper

R(W5,K6) 33 36
R(W5,K7) 43 50

R(Q3,Q3) 13 13 14

R(K3,C5,C5) 17 17 21?
R(K3,C4,C4,C4) 24 29
R(K4,C4,C4) 52 71 72

R(K−
4 ,K−

4 ,K−
4 ) 28 28 30

R(K3,K
−
4 ,K−

4 ) 21 23 27
R(K4,K

−
4 ,K−

4 ) 33 47 59
R(K4,K4,K

−
4 ) 55 104 113

R(K3,K4,K
−
4 ) 30 40 41

R(K−
4 ,K−

5 ; 3) 12 12
R(K−

4 ,K5; 3) 14 16
R(K−

4 ,K−
4 ,K−

4 ; 3) 13 14 16
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Thank you for your attention!

1
25

1
25

1
25

1
25

1
25

T
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