Flag Algebras and Its Application

Bernard Lidický

CombinaTexas 2023
Apr 23, 2023

Outline

- Flag Algebras Introduction
- "Proof" of Mantel's theorem
- Erdős Pentagon Problem and inducibility
- Crossing numbers
- ℓ_{2}-norm in Turán type problems
- ε-similar triangles
- Small Ramsey numbers

We will not make it all the way....

Inspirational Problem

- Let n be fixed number of vertices in a graph G.
- Assume G has m edges.
- What is the number of triangles in G ?
edge is
triangle is

Inspirational Problem

- Let n be fixed number of vertices in a graph G.
- Assume G has m edges. $\in\left[0,\binom{n}{2}\right]$
- What is the number of triangles in G ? $\in\left[0,\binom{n}{3}\right]$
edge is
triangle is

Inspirational Problem

- Let n be fixed number of vertices in a graph G.
- Assume G has m edges. $\in\left[0,\binom{n}{2}\right]$
- What is the number of triangles in G ? $\in\left[0,\binom{n}{3}\right]$
edge is
triangle is Liu, Pikhurko, Staden 2020 (144 pages)

Inspirational Problem

- Let n be fixed number of vertices in a graph G.
- Assume G has m edges. $\in\left[0,\binom{n}{2}\right]$
- What is the number of triangles in G ? $\in\left[0,\binom{n}{3}\right]$
edge is
triangle is Liu, Pikhurko, Staden 2020 (144 pages)

Consider $n \rightarrow \infty$.
$\#$ Edges $=p\binom{n}{2}$
\# Triangles $=t\binom{n}{3}$
Now $p, t \in[0,1]$.

Inspirational Problem

- Let n be fixed number of vertices in a graph G.
- Assume G has m edges. $\in\left[0,\binom{n}{2}\right]$
- What is the number of triangles in $G ? \in\left[0,\binom{n}{3}\right]$ Liu, Pikhurko, Staden 2020 (144 pages)

Consider $n \rightarrow \infty$.
$\#$ Edges $=p\binom{n}{2}$
\# Triangles $=t\binom{n}{3}$
Now $p, t \in[0,1]$.

Upper bound $p^{3 / 2}$ Kruskal-Katona 1964
Asymptotic lower bound by Razborov 2008

Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic Logic 72 (2007), 1239-1282.

David P. Robbins Prize by AMS for Razborov in 2013 over 300 citations (on google)

Example

If density of edges is p, what is the minimum density of triangles?

- Designed to attack extremal problems.
- Works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs).
- The results are for the limit as graphs get very large.

EXAMPLE EXTREMAL PROBLEM

WANTEII

Theorem (Mantel 1907)

Every n-vertex triangle-free graph contains at most $\frac{1}{4} n^{2}$ edges.

Problem

Maximize a graph parameter (\# of edges) over a class of graphs (triangle-free).

- local condition and global parameter (computable locally)
- threshold
- bound and extremal example

WANTEII

Theorem (Mantel 1907)
Every n-vertex triangle-free graph contains at most $\frac{1}{4} n^{2}$ edges.

Problem

Maximize a graph parameter (\# of edges) over a class of graphs (triangle-free).

- local condition and global parameter (computable locally)
- threshold
- bound and extremal example

We will use colors for edges and non-edges.

Flag algebras definitions

Let G be a 2 -edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. $\# \nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\# \nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. $\# \nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

$$
\boldsymbol{\varrho}+\boldsymbol{\emptyset}=1
$$

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\# \nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

$$
\mathfrak{b}+\boldsymbol{\emptyset}=1
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

Same kind as

$$
\mathfrak{0}+\boldsymbol{0}=1
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\dot{0}=\frac{3}{3} \longmapsto+\frac{2}{3} \longmapsto+\frac{1}{3} \longmapsto+\frac{0}{3} \longmapsto
$$

Expanded version:

Law of total probability

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
i=\longmapsto+\frac{2}{3} \longmapsto+\frac{1}{3} \longmapsto
$$

Expanded version:

Law of total probability

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$o(1)$ as $n \rightarrow \infty$ (will be omitted on next slides)

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

The probability of choosing two different vertices...
$o(1)$ as $n \rightarrow \infty$ (will be omitted on next slides)

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

The probability of choosing two different vertices...

$$
o(1) \text { as } n \rightarrow \infty \text { (will be omitted on next slides) }
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

The probability of choosing two different vertices ...
\sum_{v} : The probability that choosing two vertices u_{1}, u_{2} other than v gives red $v u_{1}$ and blue $v u_{2}$.

$$
o(1) \text { as } n \rightarrow \infty \text { (will be omitted on next slides) }
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\frac{1}{3} \bigvee=\frac{1}{n} \sum_{v \in V(G)} \nabla_{v}
$$

Flag algebras identities

Let G be a 2 -edge-colored complete graph on n vertices.

$$
\begin{aligned}
& \frac{1}{3}-\frac{1}{n} \sum_{v \in V(G)}\binom{n}{3}=\sum_{v \in V(G)}\binom{n-1}{2}
\end{aligned}
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
=\frac{1}{n} \sum_{v \in V(G)}
$$

$$
\cdots=\frac{1}{n} \sum_{v \in V(G)}
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\begin{aligned}
& \frac{1}{3}+\binom{n}{3}=\sum_{v \in V(G)}\binom{n-1}{2}
\end{aligned}
$$

Identities Summary

$$
\begin{aligned}
& =\nabla+\nabla+\nabla+\nabla \\
& \text { - }=\frac{3}{3} \longmapsto+\frac{2}{3} \longmapsto+\frac{1}{3} \longmapsto+\frac{0}{3} \longmapsto \\
& 10 \times R_{0}-\nabla_{0}+\nabla_{0} \\
& 100 \times 0-\frac{\nabla_{2}}{2}+\frac{-2}{2} \nabla_{0} \\
& \nabla=\frac{1}{n_{n}} \nabla_{0} \nabla_{0} \quad \nabla=\frac{1}{n_{n}} \nabla_{0} \nabla_{0}
\end{aligned}
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)
A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.

Example - Mantel's Theorem

Theorem (Mantel 1907)
A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume \square_{0}. (We want to conclude $\leq \frac{1}{2}$.)

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume ${ }^{\circ}=0$. (We want to conclude $\leq \frac{1}{2}$.)

$$
0 \leq \quad\left(1-2 \square_{v}\right)^{2}
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue. Assume ${ }^{\circ}=0$. (We want to conclude $\leq \frac{1}{2}$.)

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume \wp_{0}. (We want to conclude $\leq \frac{1}{2}$.)

$$
0 \leq \frac{1}{n} \sum_{v}\left(1-2 \rrbracket_{\square}\right)^{2}=\frac{1}{n} \sum_{v}\left(1-4 \square_{v}+4 \mathrm{Q}_{v}+4 \mathrm{p}_{v}\right)
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)
A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume ${ }^{\circ}=0$. (We want to conclude $\leq \frac{1}{2}$.)

$$
\begin{aligned}
0 & \left.\leq \frac{1}{n} \sum_{v}(1-2 \square)^{2}=\frac{1}{n} \sum_{v}\left(1-4 \square_{v}+4\right)_{v}+4\right)_{v}^{0}+4 \\
& =1-4
\end{aligned}
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume \wp_{0}. (We want to conclude $\leq \frac{1}{2}$.)

$$
\begin{aligned}
0 & \leq \frac{1}{n} \sum_{v}\left(1-2 \square_{v}=\frac{1}{n} \sum_{v}\left(1-4 \square_{v}+4\right)_{v}+4\right)_{v}^{0}+\frac{4}{3} \longrightarrow \\
& =1-4
\end{aligned}
$$

$$
!=\sqrt[3]{ } \nabla+\sqrt{\nabla} \nabla
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume \wp_{0}. (We want to conclude $\leq \frac{1}{2}$.)

$$
\begin{aligned}
0 & \leq \frac{1}{n} \sum_{v}\left(1-2 \prod_{v}\right)^{2}=\frac{1}{n} \sum_{v}\left(1-4{\prod_{v}}^{0}+4 \mathrm{v}_{v}+4 \mathrm{~V}_{v}\right) \\
& =1-4
\end{aligned}
$$

$$
!=\bar{i} \nabla+\nabla
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume \wp_{0}. (We want to conclude $\leq \frac{1}{2}$.)

$$
\begin{aligned}
& 0 \leq \frac{1}{n} \sum_{v}\left(1-2 \square_{v}\right)^{2}=\frac{1}{n} \sum_{v}\left(1-4 \square_{v}+4 \mathrm{Q}_{v}+4 \mathrm{v}_{v}\right) \\
& =1-4 \quad+\frac{4}{3} \longrightarrow \\
& \begin{array}{l}
i-2-\nabla \nabla-\nabla \nabla \\
1-\nabla+\nabla
\end{array}
\end{aligned}
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume \wp_{0}. (We want to conclude $\leq \frac{1}{2}$.)

$$
\begin{aligned}
& 0 \leq \frac{1}{n} \sum_{v}\left(1-2 \prod_{v}\right)^{2}=\frac{1}{n} \sum_{v}\left(1-4 \square_{v}+4 \mathrm{Q}_{v}+4 \mathrm{Q}_{v}\right) \\
& =1-4 \quad+\frac{4}{3} \longrightarrow \\
& =1-2 \text { • }-\frac{2}{3}
\end{aligned}
$$

Example - Mantel's Theorem

Theorem (Mantel 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume ${ }^{\circ}=0$. (We want to conclude $\leq \frac{1}{2}$.)

$$
\begin{aligned}
& 0 \leq \frac{1}{n} \sum_{v}\left(1-2 \prod_{\square}\right)^{2}=\frac{1}{n} \sum_{v}\left(1-4 \square_{v}+4 \mathrm{v}_{v}+4 \mathrm{Q}_{v}\right) \\
& =1-4 \quad+\frac{4}{3} \longrightarrow \\
& =1-2 \quad-\frac{2}{3} \\
& \leq 1-2 \\
& \begin{array}{l}
0=2 \quad-\frac{4}{3} \longrightarrow-\frac{2}{3} \longrightarrow \\
\quad-\frac{2}{3} \longrightarrow+\frac{1}{3} \longrightarrow
\end{array}
\end{aligned}
$$

Erdős Pentagon Problem

Pentagons in triangle-Free graphs

Problem (ERdős, 83)
Is it true that a triangle-free graph on $5 n$ vertices can contain at most n^{5} pentagons?

Pentagons in triangle-Free graphs

Problem (Erdős, 83)

Is it true that a triangle-free graph on $5 n$ vertices can contain at most n^{5} pentagons?

Theorem (Grzesik '12 \& Hatami, Hladký, Král', Norin, Razborov '13)
For all $n>n_{0}$ or $5 \mid n$, the balanced blow-up of C_{5} maximizes the number of $C_{5} s$ over all triangle free graphs, and it is unique.

Pentagons in triangle-Free graphs

Problem (Erdős, 83)

Is it true that a triangle-free graph on $5 n$ vertices can contain at most n^{5} pentagons?

Theorem (Grzesik '12 \& Hatami, Hladký, Král', Norin,
Razborov '13 \& L., Pfender '18)
For all $n>n_{0}$ or $5 \mid n$, the balanced blow-up of C_{5} maximizes the number of $C_{5} s$ over all triangle free graphs, and it is unique unless $n<5$ or $n=8$.

Extremal examples on 8 vertices

Extensions of Pentagon Problem

Problem (Palmer, 2018)
Which K_{r}-free graph on n vertices contains the most pentagons?

K_{3}

K_{4}

K_{5}

K_{6}

Extensions of Pentagon Problem

Problem (Palmer, 2018)

Which K_{r}-free graph on n vertices contains the most pentagons?

Every C_{5} counts

Theorem (L., Murphy (2021))

For all $r \geq 3$, the number of 5 -cycles among K_{r+1}-free graphs is maximized by the Turán's graph $T_{r}(n)$ for n sufficiently large.

$T_{3}(n)$

$T_{4}(n)$

$T_{5}(n)$

Every C_{5} counts

Theorem (L., Murphy (2021))

For all $r \geq 3$, the number of 5 -cycles among K_{r+1}-free graphs is maximized by the Turán's graph $T_{r}(n)$ for n sufficiently large.

Flag Algebras formulation:

Subject to $K_{r+1}=0$

Maximizing Other Graphs in K_{r}-Free

ex $(n, \# H, F):=$ Maximum number of copies of H in F-free graph on n vertices.

$T_{2}(n)$

$T_{3}(n)$

$T_{4}(n)$

$T_{5}(n)$

Theorem (Mantel (1907))
$e x\left(n, \# K_{2}, K_{3}\right)=\left|E\left(T_{2}(n)\right)\right|$. Moreover, $T_{2}(n)$ is the unique extremal graph.
Theorem (Turán (1941))
ex $\left(n, \# K_{2}, K_{r+1}\right)=\left|E\left(T_{r}(n)\right)\right|$ for $r \geq 3$, and $T_{r}(n)$ is the unique extremal graph.
Theorem (Erdős-Stone (1946), Erdős-Simonovits (1966))
$e x\left(n, \# K_{2}, F\right)=\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right)$.

Maximizing Other Graphs in K_{r}-Free

ex $(n, \# H, F):=$ Maximum number of copies of H in F-free graph on n vertices.

$T_{2}(n)$

$T_{3}(n)$

$T_{4}(n)$

$T_{5}(n)$

Theorem (Zykov (1949))
Let $t \leq r$. ex $\left(n, \# K_{t}, K_{r+1}\right)$ is maximized in $T_{r}(n)$.
Theorem (Alon, Shikhelman (2015))
$e x\left(n, \# K_{3}, C_{5}\right) \leq(1+o(1)) \frac{\sqrt{3}}{2} n^{3 / 2}$
Recent results by Gerbner+Palmer, Ma+Qui, Qian+Xie+Ge, Murphy+Nir

Maximizing Pentagons (Induced Version)

Maximize

Maximizing Pentagons (Induced Version)

Maximize

Maximizing Pentagons (Induced Version)

Maximize

Results

Theorem (Balogh, Hu, L., Pfender, 2016)
The iterated blow-up of C_{5} maximizes the number of 5 -cycles on 5^{n} vertices.

Theorem (L., Mattes, Pfender, 2023)
The iterated blow-up of C_{5} maximizes the number of 5 -cycles on n vertices. Except $n=8$.

Fractalizers

A graph G is a fractalizer if the graph maximizing the number of induced copies of G is an iterated blow-up of G.

Theorem (Fox, Huang, Lee 2015+, Yuster 2019) Almost every graph is a fractalizer.

Fractalizers

A graph G is a fractalizer if the graph maximizing the number of induced copies of G is an iterated blow-up of G.

Theorem (Fox, Huang, Lee 2015+, Yuster 2019) Almost every graph is a fractalizer.

Can you find some? Other than K_{n} or $\overline{K_{n}}$.

Conjecture (Pippinger, Golumbic 1975)
Cycles, except 4-cycle, are fractalizers.

Conjecture (Pippinger, Golumbic 1975)
Cycles, except 4-cycle, are fractalizers.

Theorem (L., Mattess, Pfender 2023)
5-cycle is almost a fractalizer; exception on 8 vertices.

Theorem (Blumenthal, Phillips, 2021+)
Net is a fractalizer if on 6^{k} vertices.

Theorem (Mubayi, Razborov 2021)
Rainbow tournaments on at least 4 vertices are fractalizers.

Graph fractalizers need at least 8 vertices.

Crossing numbers

Application to graph drawing.

Crossing number

Turán 1945: In a forced labor camp, prisoners transfer carts of bricks from kilns to shipping yards.

When two tracks cross, cart is likely to derail.

How to connect every kiln and shipping yard that minimizes the number of crossings?

$K_{m, n}$ is a complete bipartite graph with sizes m and $n, K_{3,3}$ is above.

Crossing number

Turán 1945: In a forced labor camp, prisoners transfer carts of bricks from kilns to shipping yards.

When two tracks cross, cart is likely to derail.

How to connect every kiln and shipping yard that minimizes the number of crossings?

$K_{m, n}$ is a complete bipartite graph with sizes m and $n, K_{3,3}$ is above.

For a graph $G, \operatorname{cr}(G)$ is the crossing number.

Conjecture (Zarankiewicz 1954)

$$
\operatorname{cr}\left(K_{m, n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{(n-1)}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{(m-1)}{2}\right\rfloor
$$

Theorem (Norin, Zwols 2013)

$$
\operatorname{cr}\left(K_{m, n}\right) \geq 0.905\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{(n-1)}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{(m-1)}{2}\right\rfloor
$$

for large m and n. (Zarankiewicz's conjecture is 90.5% true)

80\% Kleitman 1970
83\% De Klerk, Maharry, Pasechnik, Richter, Salazar 2006
85.9\% De Klerk, Pasechnik, Schrijver 2007
88.7\% Brosch, Polak 2022+

Rectilinear crossing number is with straight line drawing.

Theorem (Balogh, L., Norin, Pfender, Salazar, Spiro 2023+)
Zarankiewicz's conjecture is 91.1% true for large m and n.
Theorem (Balogh, L., Norin, Pfender, Salazar, Spiro 2023+)
Rectilinear version of the Zarankiewicz is 97.3% true for large m and n.
$K_{5,5,5}$

$K_{5,5,5}$

$K_{5,5,5}$

$K_{5,5,5}$

For a graph $G, \overline{c r}(G)$ is the rectilinear crossing number.
Conjecture
$\overline{c r}\left(K_{n_{1}, n_{2}, n_{3}}\right)$ is minimized by

Theorem (Gethner, Hogben, L., Pfender, Ruiz, Young, '17) $\overline{c r}\left(K_{n_{1}, n_{2}, n_{3}}\right)$ conjecture is 89% true for large n_{1}, n_{2}, and n_{3}.

Problem

What about partite graphs with more parts?

Anthony Hill
Orthogonal / Diagonal
Composition
1954

Anthony Hill Orthogonal / Diagonal Composition 1954

Hill considered crossing number of complete graphs.

Anthony Hill Orthogonal / Diagonal Composition 1954

Hill considered crossing number of complete graphs.

Conjecture (Hill 1962)

$$
\operatorname{cr}\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

Conjecture (Hill 1962)

$$
\operatorname{cr}\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

Conjecture is true

- if $n \leq 12$.
- 100% with various additional restrictions on the drawing
- 80\% Kleitman 1970
- 83\% De Klerk, Maharry, Pasechnik, Richter, Salazar 2006
- 85.9\% De Klerk, Pasechnik, Schrijver 2007
- 90.5\% Norin, Zwols 2013
- 91.1\% Balogh, L., Norin, Pfender, Salazar, Spiro 2023

Conjecture (Hill 1962)

$$
\operatorname{cr}\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

Conjecture is true

- if $n \leq 12$.
- 100% with various additional restrictions on the drawing
- 80\% Kleitman 1970
- 83\% De Klerk, Maharry, Pasechnik, Richter, Salazar 2006
- 85.9\% De Klerk, Pasechnik, Schrijver 2007
- 90.5\% Norin, Zwols 2013
- 91.1\% Balogh, L., Norin, Pfender, Salazar, Spiro 2023

Theorem (Balogh, L., Salazar 2019)
Conjecture is 98.5% true.

TuÁn type Result

Theorem (Balogh, L., Norin, Pfender, Salazar, Spiro 2023+) If $K_{n, n}^{D}$ is a drawing of $K_{n, n}$ where no $K_{3,4}$ induces exactly two crossings sharing one vertex, then $K_{n, n}^{D}$ has at least $n^{4} / 16+o\left(n^{4}\right)$ crossings. (100% True)

How is it done?

For multipartite graphs

- Color vertices to indicate parts.
- For every $\{(a, b),(c, d)\}$, where a, b, c, d are vertices remember if edges $a b$ and $c d$ cross or not.
- Necessary to generate all (combinatorial) embeddings of graphs on n vertices.

For complete graphs

- For every vertex remember clockwise order of its neighbors.
- Necessary to generate all (combinatorial) embeddings of graphs on n vertices.

ℓ_{2}-norm in Turán Type Problems

Hypergraph Setting

3-uniform hypergraphs have triples of vertices as edges.

One Edge, K_{3}^{3}

Complete hypergraph K_{4}^{3}

Turán's Tetrahedron problem: Determine ex $\left(n, \# K_{3}^{3}, K_{4}^{3}\right)$

Fanno Plane

Turán's Tetrahedron problem

Determine ex $\left(n, \# K_{3}^{3}, K_{4}^{3}\right)$
Asymptotic setting:

$$
\pi\left(K_{4}^{3}\right)=\lim _{n \rightarrow \infty} \operatorname{ex}\left(n, \# K_{3}^{3}, K_{4}^{3}\right) /\binom{n}{3}
$$

$K_{3}^{3} \quad K_{4}^{3}$

Theorem (Kostochka 1982, Brown 1983, Fon-der-Flaass 1988, Frohmade 2008)
$\pi\left(K_{4}^{3}\right) \geq 5 / 9$
Theorem (Baber 2012)
$\pi\left(K_{4}^{3}\right) \leq 0.5615$
Theorem (Razborov 2010)

$\pi\left(K_{4}^{3}\right.$, few other graphs $)=5 / 9$

Co-DEGREE VECTOR

Let G be an n-vertex 3 -uniform hypergraph
co-degree vector $X \in \mathbb{Z}\binom{n}{2}$ is indexed by pairs $u, v \in V(G)$ $X_{u, v}:=\#$ edges containing u and v.

$$
\# \text { edges }=\frac{1}{3} \sum_{u v} X_{u v}=\frac{1}{3}\|X\|_{1}
$$

Co-DEGREE VECTOR

Let G be an n-vertex 3 -uniform hypergraph
co-degree vector $X \in \mathbb{Z}\binom{n}{2}$ is indexed by pairs $u, v \in V(G)$ $X_{u, v}:=\#$ edges containing u and v.

$$
\# \text { edges }=\frac{1}{3} \sum_{u v} X_{u v}=\frac{1}{3}\|X\|_{1}
$$

New idea: Consider

$$
\sum_{u v} X_{u v}^{2}=\left(\|X\|_{2}\right)^{2}
$$

Let \mathcal{G}_{n} be H-free 3 -uniform hypergraphs on n vertices.

$$
\sigma(H):=\lim _{n \rightarrow \infty} \max _{G \in \mathcal{G}_{n}} \frac{1}{6}
$$

Theorem (Balogh, Clemen, L. 2022) $\sigma\left(K_{4}^{3}\right)=\frac{1}{3}$

Any many others.

Let \mathcal{G}_{n} be H-free 3 -uniform hypergraphs on n vertices.

$$
\sigma(H):=\lim _{n \rightarrow \infty} \max _{G \in \mathcal{G}_{n}} \frac{1}{6}
$$

Theorem (Balogh, Clemen, L. 2022) $\sigma\left(K_{4}^{3}\right)=\frac{1}{3}$

Any many others.
Future: Better exactness methods and other settings applications.

ε-similar Triangles

Problem

Let T be a triangle and $n \in \mathbb{N}$ fixed.
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?

T_{1} and T_{2} are ε-similar if their inner angles differ by at most ε. (OK to move, scale, rotate, ε-perturb)

Problem

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon>0$ fixed)
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?

T_{1} and T_{2} are ε-similar if their inner angles differ by at most ε. (OK to move, scale, rotate, ε-perturb)

Problem

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon>0$ fixed)
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?

T_{1} and T_{2} are ε-similar if their inner angles differ by at most ε. (OK to move, scale, rotate, ε-perturb)

Problem

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon>0$ fixed)
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?

T_{1} and T_{2} are ε-similar if their inner angles differ by at most ε.
(OK to move, scale, rotate, ε-perturb)

Problem

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon>0$ fixed)
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?

T_{1} and T_{2} are ε-similar if their inner angles differ by at most ε.
(OK to move, scale, rotate, ε-perturb)

Lower bound construction

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon>0$ fixed)
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?

$h(n, T, \varepsilon):=\max \#$ of ε-similar triangles to T, it is at least $\frac{1}{4}\binom{n}{3}(1+o(1))$.

Lower bound construction

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon>0$ fixed)
Which n points in \mathbb{R}^{2} maximize the number of triangles similar to T ?
$\therefore \therefore$

T

$h(n, T, \varepsilon):=\max \#$ of ε-similar triangles to T, it is at least $\frac{1}{4}\binom{n}{3}(1+o(1))$.

Results

Theorem (Bárány and Füredi (2019))

For almost every triangle T there is an $\varepsilon_{0}>0$ such that for all $0<\varepsilon \leq \varepsilon_{0}$,

$$
h(n, T, \varepsilon) \leq 0.25072\binom{n}{3}(1+o(1))
$$

If T is equilateral, then $h(n, T, \varepsilon)=\frac{1}{4}\binom{n}{3}(1+o(1))$
Theorem (Balogh, Clemen, L. (2022))
For almost every triangle T there is an $\varepsilon_{0}>0$ such that for all $0<\varepsilon \leq \varepsilon_{0}$,

$$
h(n, T, \varepsilon)=\frac{1}{4}\binom{n}{3}(1+o(1)) .
$$

$h(n, T, \varepsilon):=\max \#$ of ε-similar triangles to T, it is at least $\frac{1}{4}\binom{n}{3}(1+o(1))$.

Let T and ε are given

- Fix n points in the plane.
- For every $T^{\prime} \varepsilon$-similar to T, add a 3-edge
- Investigate the resulting hypergraph H H has no subhypergaph in $\mathcal{F}=\left\{K_{4}^{3}, \ldots\right\}$

Let T and ε are given

- Fix n points in the plane.
- For every $T^{\prime} \varepsilon$-similar to T, add a 3-edge
- Investigate the resulting hypergraph H H has no subhypergaph in $\mathcal{F}=\left\{K_{4}^{3}, \ldots\right\}$

Let T and ε are given

- Fix n points in the plane.
- For every $T^{\prime} \varepsilon$-similar to T, add a 3-edge
- Investigate the resulting hypergraph H H has no subhypergaph in $\mathcal{F}=\left\{K_{4}^{3}, \ldots\right\}$

Let T and ε are given

- Fix n points in the plane.
- For every $T^{\prime} \varepsilon$-similar to T, add a 3-edge
- Investigate the resulting hypergraph H H has no subhypergaph in $\mathcal{F}=\left\{K_{4}^{3}, \ldots\right\}$

Theorem (Balogh, Clemen, L. (2022))
\mathcal{F}-free hypergraph has at most $\frac{1}{4}\binom{n}{3}(1+o(1))$ edges.

Let T and ε are given

- Fix n points in the plane.
- For every $T^{\prime} \varepsilon$-similar to T, add a 3-edge
- Investigate the resulting hypergraph H H has no subhypergaph in $\mathcal{F}=\left\{K_{4}^{3}, \ldots\right\}$

Theorem (Balogh, Clemen, L. (2022))
\mathcal{F}-free hypergraph has at most $\frac{1}{4}\binom{n}{3}(1+o(1))$ edges.
All triangles?
Other Shapes? in \mathbb{R}^{d} ?

Small Ramsey numbers

Definition

$R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the smallest integer n such that any k-edge coloring of K_{n} contains a copy of G_{i} in color i for some $1 \leq i \leq k$.

$$
R\left(K_{3}, K_{3}\right)>5
$$

$$
R\left(K_{3}, K_{3}\right) \leq 6
$$

Definition

$R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the smallest integer n such that any k-edge coloring of K_{n} contains a copy of G_{i} in color i for some $1 \leq i \leq k$.

$$
R\left(K_{3}, K_{3}\right)>5
$$

$$
R\left(K_{3}, K_{3}\right) \leq 6
$$

Theorem (Ramsey 1930)

$R\left(K_{m}, K_{n}\right)$ is finite.
$R\left(G_{1}, \ldots, G_{k}\right)$ is finite

Questions:

- study how $R\left(G_{1}, \ldots, G_{k}\right)$ grows if G_{1}, \ldots, G_{k} grow (large)
- study $R\left(G_{1}, \ldots, G_{k}\right)$ for fixed G_{1}, \ldots, G_{k} (small)

Theorem (Ramsey 1930)

$R\left(K_{m}, K_{n}\right)$ is finite.
$R\left(G_{1}, \ldots, G_{k}\right)$ is finite

Questions:

- study how $R\left(G_{1}, \ldots, G_{k}\right)$ grows if G_{1}, \ldots, G_{k} grow (large)
- study $R\left(G_{1}, \ldots, G_{k}\right)$ for fixed G_{1}, \ldots, G_{k} (small)

Radziszowski - Small Ramsey Numbers Electronic Journal of Combinatorics - Survey

[Erdős] Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.

Take any graph G with no and

If G has k vertices, then the blow-up has density of non-edges $\geq \frac{1}{k}$.

Take any graph G with no and

If G has k vertices, then the blow-up has density of non-edges $\geq \frac{1}{k}$. If any blow-up has density of non-edges $\geq \frac{1}{k}$ then G has $\leq k$ vertices.

New upper bounds (L., Pfender 2021)

Problem	Lower	New upper	Old upper
$R\left(K_{4}^{-}, K_{8}^{-}\right)$	29	32	38
$R\left(K_{4}^{-}, K_{9}^{-}\right)$	31	46	53
$R\left(K_{4}, K_{7}^{-}\right)$	37	49	52
$R\left(K_{5}^{-}, K_{6}^{-}\right)$	31	38	39
$R\left(K_{5}^{-}, K_{7}^{-}\right)$	40	65	66
$R\left(K_{5}, K_{6}^{-}\right)$	43	62	66
$R\left(K_{5}, K_{7}^{-}\right)$	58	102	110
$R\left(K_{6}^{-}, K_{7}^{-}\right)$	59	124	135
$R\left(K_{7}, K_{4}^{-}\right)$	28	29	30
$R\left(K_{8}, K_{4}^{-}\right)$	29	39	42
$R\left(K_{8}, C_{5}\right)$	29	29	33
$R\left(K_{9}, C_{5}\right)$	33	36	
$R\left(K_{9}, C_{6}\right)$	41	41	
$R\left(K_{9}, C_{7}\right)$	49	58	
$R\left(K_{2,2,2}, K_{2,2,2}\right)$	30	32	$60 ?$

Problem	Lower	New upper	Old upper
$R\left(K_{3,4}, K_{2,5}\right)$		20	21
$R\left(K_{3,4}, K_{3,3}\right)$		20	25
$R\left(K_{3,4}, K_{3,4}\right)$		25	30
$R\left(K_{3,5}, K_{1,6}\right)$	17	17	
$R\left(K_{3,5}, K_{2,4}\right)$	16	20	
$R\left(K_{3,5}, K_{2,5}\right)$	21	23	
$R\left(K_{3,5}, K_{3,3}\right)$		24	28
$R\left(K_{3,5}, K_{3,4}\right)$		29	33
$R\left(K_{3,5}, K_{3,5}\right)$	30	33	38
$R\left(K_{4,4}, K_{4,4}\right)$	30	49	62
$R\left(W_{7}, W_{4}\right)$		21	
$R\left(W_{7}, W_{5}\right)$		16	
$R\left(W_{7}, W_{6}\right)$		19	
$R\left(B_{4}, B_{5}\right)$	17	19	20
$R\left(B_{3}, B_{6}\right)$	17	19	22
$R\left(B_{5}, B_{6}\right)$	22	24	26

Problem	Lower	New upper	Old upper
$R\left(W_{5}, K_{6}\right)$	33	36	
$R\left(W_{5}, K_{7}\right)$	43	50	
$R\left(Q_{3}, Q_{3}\right)$	13	13	14
$R\left(K_{3}, C_{5}, C_{5}\right)$	17	17	$21 ?$
$R\left(K_{3}, C_{4}, C_{4}, C_{4}\right)$	24	29	
$R\left(K_{4}, C_{4}, C_{4}\right)$	52	71	72
$R\left(K_{4}^{-}, K_{4}^{-}, K_{4}^{-}\right)$	28	28	30
$R\left(K_{3}, K_{4}^{-}, K_{4}^{-}\right)$	21	23	27
$R\left(K_{4}, K_{4}^{-}, K_{4}^{-}\right)$	33	47	59
$R\left(K_{4}, K_{4}, K_{4}^{-}\right)$	55	104	113
$R\left(K_{3}, K_{4}, K_{4}^{-}\right)$	30	40	41
$R\left(K_{4}^{-}, K_{5}^{-} ; 3\right)$	12	12	
$R\left(K_{4}^{-}, K_{5} ; 3\right)$	14	16	
$R\left(K_{4}^{-}, K_{4}^{-}, K_{4}^{-} ; 3\right)$	13	14	16

Thank you for your attention!

