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Question

Count functions
f : {0, 1}n → {0, 1} 22

n

k-SAT FUNCTION can be defined as

f (x1, . . . , xn) = C1 ∨ C2 ∨ · · · ∨ Cm

Ci = z1 ∧ z2 ∧ · · · ∧ zk︸ ︷︷ ︸
all different variables

zi ∈ {x1,¬x1, x2,¬x2, . . . , xn,¬xn}

xi variable, Ci clause, zi literal
example k = 3

x1 ∧ x2 → (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3)

x1 ∧ x2 ∧ ¬x2 → always false

Every k-SAT function has a formula but the formula may not be unique.
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number of f : {0, 1}n → {0, 1} 22
n

number of k-SAT formula 22
k(nk)

number of k-SAT functions?

k-SAT formula is monotone if it uses only x1, x2, . . . , xn, (i.e. no ¬xi is used)

All monotone k-SAT formula give different functions

g ̸∈ x1 ∧ · · · ∧ xk ∋ f f ̸= g at x1 = · · · = xk = 1, xk+1 = · · · = xm = 0

Number of monotone k-SAT functions 2(
n
k)

k-SAT formula is unate if it uses at most one of {xi ,¬xi} = {xi , xi}
Number of unate k-SAT functions (1 + o(1))2n+(

n
k)

Functions avoiding xi counted multiple times
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Conjecture (Bollobás, Brightwell, Leader 2003)

Fix k ≥ 2, 1− o(1) fraction of k-SAT functions are unate as n → ∞. (1 + o(1))2n+(
n
k)

• # 2-SAT functions is 2(1+o(1))(n2). Bollobás, Brightwell, Leader 2003
using Szemerédi regularity lemma

• Conjecture true for k = 2 Allen 2007
using Szemerédi regularity lemma

• Conjecture true for k = 2 Ilinca, Kahn 2009
without Szemerédi regularity lemma

• Conjecture true for k = 3 Ilinca, Kahn 2012
using hypergraph regularity lemma

• Conjecture true for k = 4, 5 Dong, Mani, Zhao 2022

Conjecture true for all k :-) Balogh, Dong, Lidický, Mani, Zhao 2022+
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• C1 ∨ · · · ∨ Cm is minimal if deleting any Ci changes the function.

• i.e. for every Ci exists X ∈ {0, 1}n s.t. only Ci is satisfied
(w ∧ x) ∨ (w ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is not minimal

Idea: forbid non-minimal formula and transform to a Turán type problem.
k-uniform hypergraph

V = {x1, . . . , xn} E =

({x1, . . . , xn}
k

)
Count the number of hypergraphs not containing forbidden configurations.
(forbidden configuration is a non-minimal formula)

5



• Trouble 1: How to reduce {x1, x1, . . . , xn, xn} to n vertices and identify forbidden
configurations?
Dong, Mani, Zhao using blow-up, saturation, container method

• Trouble 2: How to solve the resulting hypergraph extremal problem?
BDLMZ: computer free flag-algebra
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Directed Hyergraph Turán Problem

Partially directed k-graph is a k-uniform hypergraph, where every edge is

• undirected

• rooted at one vertex (directed towards one vertex)

H⃗ ⊆ G⃗ if H⃗ could be obtained from G⃗ by removing some vertices, edges, or
orientations.

a

b c

d

⊆

a

b c

d

e
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T⃗k

• T⃗2 = {1̂2, 13, 23}

• T⃗3 = {1̂24, 134, 234}

• T⃗k = {1̂24 · · · k + 1, 134 · · · k + 1, 234 · · · k + 1}
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Extremal problem
G is k-uniform, n-vertex, T⃗k -free.

1 2 3 4 := α :=
eundirected(G )(n

k

) 1 2 3 4 := β :=
edirected(G )(n

k

)
Given k, θ, what is

max{α+ θβ}?

Special (open) case:

Show α+ θβ ≤ 1 when 1 ≤ θ ≤
(
1− 1

k

)1−k ≈ e
Constructions:

Complete undirected graph

n/k (1− 1/k)n
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Conjecture (Bollobás, Brightwell, Leader 2003)

Fix k ≥ 2, almost all k-SAT functions are unate.

Theorem (Dong, Mani, Zhao)

If α+ θβ ≤ 1 when log2 3 < θ then almost all k-SAT functions are unate.

This theorem is a lot of work.

Theorem (Dong, Mani, Zhao)

Conjecture true for k ≤ 5.

Theorem (Balogh, Dong, Lidický, Mani, Zhao)

Conjecture true for all k .
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Containers

• few containers

• each minimal k-SAT formula is a subformula of at least one container

• Undirected edge {x1, x2, · · · , xk} in a container gives

x1 ∧ x2 ∧ · · · ∧ xk or nothing

• Directed edge {x̂1, x2, . . . , xk} in a container gives

x1 ∧ x2 ∧ · · · ∧ xk or x1 ∧ x2 ∧ · · · ∧ xk or nothing

• One container with α
(n
k

)
undirected edges and β

(n
k

)
directed edges gives up to

2α(
n
k)3β(

n
k) = 2(α+β log2 3)(

n
k) k-SAT formulas
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Theorem (Füredi 1992)

e(G 2) ≥ e(G )− ⌊n2⌋ where E (G 2) = {(x , y) : ∃z , xz , yz ∈ E (G )}

Theorem (Dong, Mani, Zhao)

For k = 2: α+ 2β ≤ 1 + o(1)

Proof.

• H⃗ be T⃗2-free graph

• G underlying graph (forget orientation)
e(G ) = (α+ β)

(n
2

)
• xy ∈ E (G ) and xy ∈ E (G 2) means xy was undirected in H⃗.

• (
n

2

)
≥ e(G 2) + β

(
n

2

)
≥ e(G ) + β

(
n

2

)
− n

2
= (α+ 2β)

(
n

2

)
− n

2

x

y

z
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• Averaging via link-graphs of v ∈ H⃗:

π

(
T⃗k ,

(k − 1)θ + 1

k

)
≤ π

(
T⃗k−1, θ

)

•
π

(
T⃗3,

5

3

)
≤ π

(
T⃗2, 2

)
• 5

3 > log2 3 implying case k = 3

• cases k = 4, 5 slightly more complicated

Theorem (Balogh, Dong, Lidický, Mani, Zhao)

All values of k.
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Proof for k = 4

α+ θβ

= 1 2 3 4 + θ 1 2 3 4

≤ 1 2 3 4 + θ 1 2 3 4 +
r
(a 1 2 3 4 − b 1 2 3 4 )

2
z

≤ 1

for θ = 1 + 1√
2
≥ 1.707 > log2 3 a = 1√

2
, b = k(θ−1)−1√

2
k ≥ 4
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Proof for k = 2 and k = 3

1 1 2 + 1.7 1 2 +
r
(−1 1 2 − 1 1 2 + 0.98 1 2 )

2
z
≤ 1

1 1 2 3 +1.7 1 2 3 +0.039×
r
(−6 1 2 3 − 5 1 2 3 + 5 1 2 3 )

2
z
≤ 1
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Theorem (Balogh, Dong, Lidický, Mani, Zhao)

If T⃗k is forbidden, then 1 2 3 4 +
(
1 + 1√

2

)
1 2 3 4 ≤ 1 for all k .

Question

If T⃗k is forbidden, then 1 2 3 4 +
(
1− 1

k

)1−k
1 2 3 4 ≤ 1 for all k?

n/k (1− 1/k)n
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