Flag Algebras and

Weighted Turán problems with applications to Ramsey-Turán questions

József Balogh Domagoj Bradač Bernard Lidický

FOCM 2023
Jun 12, 2023

Ramsey and Turán

Theorem (Ramsey (1930))

For every r, s exists $R(r, s)$ such that every graph on $R(r, s)$ vertices contains K_{r} or $\overline{K_{s}}$.

Theorem (Turán (1941))

K_{q}-free graph on n vertices maximizing the number of edges is $T_{q-1}(n)$.

$T_{2}(n)$

$T_{3}(n)$

$T_{4}(n)$

$T_{5}(n)$

Ramsey-Turán

Problem

What K_{q}-free graph on n vertices maximizing the number of edges while having low independence number?

Problem

What K_{q}-free graph on n vertices is maximizing the number of edges while having low p-independence number?
p-independence number of a graph G is

$$
\alpha_{p}(G):=\max \left\{|U|: U \subseteq V(G) \text { and } G[U] \text { is } K_{p} \text {-free }\right\}
$$

Note $\alpha_{2}(G)=\alpha(G)$

Ramsey-Turán number

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

Problem

What K_{q}-free graph on n vertices is maximizing the number of edges while having low p-independence number?
p-independence number of a graph G is

$$
\alpha_{p}(G):=\max \left\{|U|: U \subseteq V(G) \text { and } G[U] \text { is } K_{p} \text {-free }\right\}
$$

Note $\alpha_{2}(G)=\alpha(G)$

Ramsey-Turán number

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

Problem

What K_{q}-free graph on n vertices is maximizing the number of edges while having low p-independence number?
p-independence number of a graph G is

$$
\alpha_{p}(G):=\max \left\{|U|: U \subseteq V(G) \text { and } G[U] \text { is } K_{p} \text {-free }\right\}
$$

Note $\alpha_{2}(G)=\alpha(G)$

Ramsey-Turán number

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

Problem

What K_{q}-free graph on n vertices is maximizing the number of edges while having low p-independence number?
p-independence number of a graph G is

$$
\alpha_{p}(G):=\max \left\{|U|: U \subseteq V(G) \text { and } G[U] \text { is } K_{p} \text {-free }\right\}
$$

Note $\alpha_{2}(G)=\alpha(G)$

Ramsey-Turán number

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

p-independence number of a graph G is

$$
\alpha_{p}(G):=\max \left\{|U|: U \subseteq V(G) \text { and } G[U] \text { is } K_{p} \text {-free }\right\}
$$

Ramsey-Turán number

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

Asymptotic version

$$
\varrho_{p}(q):=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{R T_{p}\left(n, K_{q}, \varepsilon n\right)}{\binom{n}{2}}
$$

Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi '94)

The asymptotic extremal graph G for $\varrho_{p}(q)$ has the following structure. Let $q=p t+r+2$, where $t \in \mathbb{N}$ and $r \in \mathbb{Z}_{p}$. Then there is a partition $V(G)=V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ such that

- $e\left(G\left[V_{i}\right]\right)=o\left(n^{2}\right)$ for all $0 \leq i \leq t$;
- $d_{G}\left(V_{0}, V_{1}\right)=\frac{r+1}{p}-o(1)$, and degrees in $G\left[V_{0}, V_{1}\right]$ differ by $o(n)$;
- $d_{G}\left(V_{i}, V_{j}\right)=1-o(1)$ for all pairs $\{i, j\} \neq\{0,1\}$.

In particular
$\varrho_{p}(q)=\varrho_{p}^{\star}(q):=\frac{(t-1)(2 p-r-1)+r+1}{t(2 p-r-1)+r+1}$.

Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi '94)

The asymptotic extremal graph G for $\varrho_{p}(q)$ has the following structure. Let $q=p t+r+2$, where $t \in \mathbb{N}$ and $r \in \mathbb{Z}_{p}$. Then there is a partition $V(G)=V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ such that

- $e\left(G\left[V_{i}\right]\right)=o\left(n^{2}\right)$ for all $0 \leq i \leq t$;
- $d_{G}\left(V_{0}, V_{1}\right)=\frac{r+1}{p}-o(1)$, and degrees in $G\left[V_{0}, V_{1}\right]$ differ by $o(n)$;
- $d_{G}\left(V_{i}, V_{j}\right)=1-o(1)$ for all pairs $\{i, j\} \neq\{0,1\}$.

In particular
$\varrho_{p}(q)=\varrho_{p}^{\star}(q):=\frac{(t-1)(2 p-r-1)+r+1}{t(2 p-r-1)+r+1}$.

Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi '94)
The asymptotic extremal graph G for $\varrho_{p}(q)$ has the following structure. Let $q=p t+r+2$, where $t \in \mathbb{N}$ and $r \in \mathbb{Z}_{p}$. Then there is a partition $V(G)=V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ such that

- $e\left(G\left[V_{i}\right]\right)=o\left(n^{2}\right)$ for all $0 \leq i \leq t$;
- $d_{G}\left(V_{0}, V_{1}\right)=\frac{r+1}{p}-o(1)$, and degrees in $G\left[V_{0}, V_{1}\right]$ differ by $o(n)$;
- $d_{G}\left(V_{i}, V_{j}\right)=1-o(1)$ for all pairs $\{i, j\} \neq\{0,1\}$.

In particular
$\varrho_{p}(q)=\varrho_{p}^{\star}(q):=\frac{(t-1)(2 p-r-1)+r+1}{t(2 p-r-1)+r+1}$.

Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi '94) The asymptotic extremal graph G for $\varrho_{p}(q)$ has the following structure. Let $q=p t+r+2$, where $t \in \mathbb{N}$ and $r \in \mathbb{Z}_{p}$. Then there is a partition $V(G)=V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ such that

- $e\left(G\left[V_{i}\right]\right)=o\left(n^{2}\right)$ for all $0 \leq i \leq t$;
- $d_{G}\left(V_{0}, V_{1}\right)=\frac{r+1}{p}-o(1)$, and degrees in $G\left[V_{0}, V_{1}\right]$ differ by $o(n)$;
- $d_{G}\left(V_{i}, V_{j}\right)=1-o(1)$ for all pairs $\{i, j\} \neq\{0,1\}$.

In particular

$\varrho_{p}(q)=\varrho_{p}^{\star}(q):=\frac{(t-1)(2 p-r-1)+r+1}{t(2 p-r-1)+r+1}$.

Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi '94) The asymptotic extremal graph G for $\varrho_{p}(q)$ has the following structure. Let $q=p t+r+2$, where $t \in \mathbb{N}$ and $r \in \mathbb{Z}_{p}$. Then there is a partition $V(G)=V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ such that

- $e\left(G\left[V_{i}\right]\right)=o\left(n^{2}\right)$ for all $0 \leq i \leq t$;
- $d_{G}\left(V_{0}, V_{1}\right)=\frac{r+1}{p}-o(1)$, and degrees in $G\left[V_{0}, V_{1}\right]$ differ by $o(n)$;
- $d_{G}\left(V_{i}, V_{j}\right)=1-o(1)$ for all pairs $\{i, j\} \neq\{0,1\}$.

In particular

$\varrho_{p}(q)=\varrho_{p}^{\star}(q):=\frac{(t-1)(2 p-r-1)+r+1}{t(2 p-r-1)+r+1}$.
Liu, Reiher, Sharifzadeh, and Staden $\varrho_{16}(22)=1 / 6>5 / 32=\varrho_{16}^{\star}(22)$

Conjectured construction

FIGURE: Sketch of a construction for $\varrho_{5}(12) \geq \frac{10}{19}$.

Liu, Reiher, Sharifzadeh, and Staden
Let $q=p t+\ell+1$. Then for all $0 \leq \ell \leq p / 2: \varrho_{p}(q) \geq \varrho_{p}^{\star}(q)$

Conjectured construction

FIGURE: Sketch of a construction for $\varrho_{5}(12) \geq \frac{10}{19}$.

Liu, Reiher, Sharifzadeh, and Staden
Let $q=p t+\ell+1$. Then for all $0 \leq \ell \leq p / 2: \varrho_{p}(q) \geq \varrho_{p}^{\star}(q)$

Conjectured construction

FIGURE: Sketch of a construction for $\varrho_{5}(12) \geq \frac{10}{19}$.

Liu, Reiher, Sharifzadeh, and Staden
Let $q=p t+\ell+1$. Then for all $0 \leq \ell \leq p / 2: \varrho_{p}(q) \geq \varrho_{p}^{\star}(q)$

Conjectured construction

Figure: Sketch of a construction for $\varrho_{5}(12) \geq \frac{10}{19}$.

Liu, Reiher, Sharifzadeh, and Staden
Let $q=p t+\ell+1$. Then for all $0 \leq \ell \leq p / 2: \varrho_{p}(q) \geq \varrho_{p}^{\star}(q)$

Our work

We calculate upper bound on $\varrho_{p}(q)$ for some small values of p and q.

$$
\varrho_{p}(q)=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{R T_{p}\left(n, K_{q}, \varepsilon n\right)}{\binom{n}{2}}
$$

Plan

- Take large K_{q}-free n-vertex graph G where every εn vertices contain K_{p}.
- Apply Szemerédi Regularity Lemma
- Get reduced graph R
- Note R is edge-weighted graph
- Show R does not contain certain subgraphs
- Compute an upper bound on edge density in R

G
 (Weighted Turán Problem)

- It gives an upper bound on the edges in G

Weighted Turán Problems

An edge weighting w is $w: E(G) \rightarrow[0,1]$.

$$
w(G):=\frac{2}{n^{2}} \sum_{e \in E(G)} w(e) .
$$

A weighted clique is (r, f)

$$
f:\binom{[r]}{2} \rightarrow[0,1]
$$

(G, w) contains (r, f) if exists injective

$$
\phi:[r] \rightarrow V(G) \quad \phi(i) \phi(j) \in E(G) \text { and } w(\phi(i) \phi(j))>f(i j)
$$

Asymptotic PROBLEM

An edge weighting w is $w: E(G) \rightarrow[0,1]$.

$$
w(G):=\frac{2}{n^{2}} \sum_{e \in E(G)} w(e)
$$

Asymptotic Turán problem:

$$
d\left(K_{q}\right):=\lim _{n \rightarrow \infty} \max _{|V(G)|=n, G \text { is } K_{q} \text {-free }} e(G) /\binom{n}{2}
$$

Set of weighted cliques \mathcal{F}

$$
d(\mathcal{F}):=\lim _{n \rightarrow \infty} \max _{|V(G)|=n, G \text { is } \mathcal{F} \text {-free }} w(G)
$$

Weighted Turán

A Turán edge weighting $w_{T}: E(G) \rightarrow[0,1]$.

$$
\begin{gathered}
w_{T}(e):=\frac{r}{2(r-1)} \quad \text { where } r=\operatorname{argmax}_{k}\{e \text { is in } k \text {-clique in } G\} \\
w_{T}(G):=\frac{2}{n^{2}} \sum_{e \in E(G)} w_{T}(e)
\end{gathered}
$$

Observation
For every $k \geq 2$

$$
\lim _{n \rightarrow \infty} w_{T}\left(T_{k}(n)\right)=\frac{1}{2}
$$

since $e\left(T_{k}(n)\right)=\frac{r-1}{r}\binom{n}{2}$.
Theorem (Bradač; Malec, Tompkins)
For every G holds $w_{T}(G) \leq \frac{1}{2}$.

Key lemma

$$
g(A):=\max \left\{\mathbf{u}^{\top} A \mathbf{u} \mid \mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)^{\top}, \sum_{i=1}^{m} u_{i}=1, u_{i} \geq 0\right\}
$$

A is dense if for every $i \in[m], A_{i, i}=0$ and A^{\prime} obtained from A by removing $i^{t h}$ row and column satisfies $g\left(A^{\prime}\right)<g(A)$.
Lemma (Liu, Reiher, Sharifzadeh, and Staden 2021+)
Let $m \in \mathbb{N}$ and let $A=\left(a_{i j}\right)$ be a dense symmetric $m \times m$ matrix with nonnegative entries and let u be optimal for A. Then

1. A is positive, that is, $a_{i j}>0$ for every $1 \leq i<j \leq m$,
2. $u_{i}>0$ for every $i \in[m]$,
3. $\sum_{i \in[m] \backslash\{j\}} a_{i j} u_{i}=g(A)$, for every $j \in[m]$.

Theorem (Bradač)

For every G holds $w_{T}(G) \leq \frac{1}{2}$.
Proof: Let $V(G)=v_{1}, \ldots, v_{n}$. Define $A \in \mathbb{R}^{n \times n}$

$$
A_{i, j}= \begin{cases}w_{T}\left(v_{i}, v_{j}\right) & \text { if }\left(v_{i}, v_{j}\right) \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

for $\mathbf{x}=(1 / n, \ldots, 1 / n)$, we obtain

$$
w_{T}(G)=\frac{2}{n^{2}} \sum_{e \in E(G)} w_{T}(e)=\mathbf{x}^{\top} A \mathbf{x} \leq g(A) \leq \frac{1}{2}
$$

A^{\prime} principal submatrix of A maximizing $g\left(A^{\prime}\right)$, pick minimal by inclusion A^{\prime} is dense, let $K \subseteq V(G)$ correspond to A^{\prime}.
K induces a clique by Lemma
$a_{i, j} \leq w_{T}(|K|)$
$g(A) \leq g\left(A^{\prime}\right) \leq \sum_{i \in K} u_{i} \sum_{j \in K, j \neq i} u_{j} w_{T}(k)=w_{T}(k) \sum_{i \in K} u_{i}\left(1-u_{i}\right)=$ $w_{T}(k)\left(1-\sum_{i \in K} u_{i}^{2}\right) \leq w_{T}(k)\left(1-\frac{1}{k}\right)=\frac{1}{2}$

OTher weights

A clique weighting $c w: \mathbb{N} \rightarrow[0,1]$.

$$
\begin{aligned}
& w(e):=c w(r) \quad \text { where } r=\operatorname{argmax}_{k}\{e \text { is in } k \text {-clique in } G\} \\
& w(G):=\frac{2}{n^{2}} \sum_{e \in E(G)} w(e)
\end{aligned}
$$

Theorem

Let $c w$ be a clique weighting. Under mild assumptions, if $w(G)$ is close maximum, then G is close $T_{r}(n)$ for some r.

Other weights

A clique weighting $c w: \mathbb{N} \rightarrow[0,1]$,
$w(e):=c w(r) \quad$ where $r=\operatorname{argmax}_{k}\{e$ is in k-clique in $G\}$
$w(G):=\frac{2}{n^{2}} \sum_{e \in E(G)} w(e)$

In K_{5}-free graphs, $c w(2)=1$ If $c w(3) \leq 3 / 4$ and $c w(4) \leq 2 / 3$, then $T_{2}(n)$ is extremal.
If $c w(3) \geq 3 / 4$ and $c w(3) \geq \frac{9}{8} c w(4)$, then $T_{3}(n)$ is extremal.
If $c w(4) \geq 2 / 3$ and $c w(3) \leq \frac{9}{8} c w(4)$, then $T_{4}(n)$ is extremal.

Back to Ramsey-Turán

Ramsey-Turán number

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

Asymptotic version

$$
\varrho_{p}(q)=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{R T_{p}\left(n, K_{q}, \varepsilon n\right)}{\binom{n}{2}}
$$

$$
\varrho_{2}(2 t+1)=\frac{t-1}{t} \quad \text { for all } t \geq 1, \quad \text { and } \quad \varrho_{2}(2 t)=\frac{3 t-5}{3 t-2} \quad \text { for all } t \geq 2
$$

p, q	5	6	7	8	9	10	11	12	13	14
3	H	S	E	H		E	H		E	H
4	0	H	S	S	E	H	\star		E	H
5	0	0	S	S	S	S	E	\star		
6	0	0	0	S	S	S	S	\star	E	\star

Our addition

$$
R T_{p}\left(n, K_{q}, m\right):=\max \left\{e(G): G \text { is } K_{q}-\text { free, } v(G)=n, \alpha_{p}(G) \leq m,\right\}
$$

Asymptotic version

$$
\varrho_{\rho}(q)=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{R T_{p}\left(n, K_{q}, \varepsilon n\right)}{\binom{n}{2}}
$$

$\varrho_{2}(2 t+1)=\frac{t-1}{t} \quad$ for all $t \geq 1, \quad$ and $\quad \varrho_{2}(2 t)=\frac{3 t-5}{3 t-2} \quad$ for all $t \geq 2$.

Theorem

The following bounds hold: $\varrho_{4}(11) \leq \frac{4}{7}, \varrho_{5}(12) \leq \frac{10}{19}, \varrho_{6}(12) \leq \frac{5}{12}$, and $\varrho_{6}(14) \leq \frac{12}{23}$. In particular, $\varrho_{5}(12)=\frac{10}{19}$.

Translated to weighted Turán problems solved using flag algebras.

PRoof Sketch For $\varrho_{5}(12) \leq \frac{10}{19}$.

- Large K_{12}-free n-vertex graph G where every εn vertices contain K_{5}.
- Apply Szemerédi Regularity Lemma
- Get reduced graph R
- Note R is edge-weighted graph
- Show R does not contain certain subgraphs
- Compute an upper bound on edge density in R

(Weighted Turán Problem)
- It gives an upper bound on the edges in G

Forbidden configuration on R

εn vertices contain K_{5}, find K_{12} if R contains weighted triangle $v_{1} v_{2} v_{3}$. Embedding lemma by Erdős, Hajnal, Simonovits, Sós, Szemeredi, see also Liu et. al.

All Forbidden configurations for $\varrho_{5}(12) \leq \frac{10}{19}$

Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic Logic 72 (2007), 1239-1282.

David P. Robbins Prize by AMS for Razborov in 2013 over 300 citations (on google)

Example

If density of edges is p, what is the minimum density of triangles?

- Designed to attack extremal problems.
- Works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs).
- The results are for the limit as graphs get very large.

Weighted problem using flag algebras

- No such thing as weighted flags
- Flag algebras allow coloring edges from a finite set of colors
- Make density ranges as colors

$$
\frac{1}{5} c_{2}+\frac{1}{2} c_{3}+\frac{3}{5} c_{4}+\frac{4}{5} c_{5}+c_{6} \leq \frac{10}{19}+o(1)
$$

Flag Algebras

* Nothing in these slides is endorsed by Razborov except this picture

EXAMPLE EXTREMAL PROBLEM

Theorem (Mantel 1907)

Every n-vertex triangle-free graph contains at most $\frac{1}{4} n^{2}$ edges.

Problem

Maximize a graph parameter (\# of edges) over a class of graphs (triangle-free).

- local condition and global parameter
- threshold
- bound and extremal example

EXAMPLE EXTREMAL PROBLEM

Theorem (Mantel 1907)

Every n-vertex triangle-free graph contains at most $\frac{1}{4} n^{2}$ edges.

Problem

Maximize a graph parameter (\# of edges) over a class of graphs (triangle-free).

- local condition and global parameter
- threshold
- bound and extremal example

We will use colors for edges and non-edges.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

Flag algebras definitions

Let G be a 2 -edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

$$
\mathfrak{b}+\boldsymbol{0}=
$$

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.
The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

$$
\boldsymbol{\varrho}+\boldsymbol{\emptyset}=1
$$

Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. \# $\nabla /\binom{n}{3}$.

The probability that three random vertices in G span a graph isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to v by a red edge, i.e., the red degree of v divided by $n-1$.

Type - flag induced by labeled vertices

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

Same kind as

$$
\mathfrak{0}+\boldsymbol{0}=1
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\dot{\varphi}=\frac{3}{3} \longmapsto+\frac{2}{3} \longmapsto+\frac{1}{3} \longmapsto+\frac{0}{3} \longmapsto
$$

Expanded version:

$$
{ }^{\rho}(!)=p(\ \nabla) \cdot p(\nabla)+\rho(\ \nabla) \cdot p(\nabla)+\cdots
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
i=\longmapsto+\frac{2}{3} \longmapsto+\frac{1}{3} \longmapsto
$$

Expanded version:

$$
{ }^{\rho}(!)=p(\ \nabla) \cdot p(\nabla)+\rho(\ \nabla) \cdot p(\nabla)+\cdots
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$o(1)$ as $|V(G)| \rightarrow \infty$ (will be omitted on next slides)

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

The probability of choosing two different vertices ...
$o(1)$ as $|V(G)| \rightarrow \infty$ (will be omitted on next slides)

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

The probability of choosing two different vertices...
$o(1)$ as $|V(G)| \rightarrow \infty$ (will be omitted on next slides)

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

The probability of choosing two different vertices ...
\sum_{v} : The probability that choosing two vertices u_{1}, u_{2} other than v gives red $v u_{1}$ and blue $v u_{2}$.
$o(1)$ as $|V(G)| \rightarrow \infty$ (will be omitted on next slides)

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\frac{1}{3} \vee=\frac{1}{|V(G)|} \sum_{v \in V(G)} \nabla_{v}
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\frac{1}{3} \longmapsto=\frac{1}{|V(G)|} \sum_{v \in V(G)} \longmapsto_{v}
$$

$$
\longmapsto\binom{n}{3}=\sum_{v \in V(G)} \longmapsto_{v}\binom{n-1}{2}
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\begin{aligned}
& \nabla(0)-\Sigma_{0} \nabla_{0}^{\left(l_{2}^{-1}\right)}
\end{aligned}
$$

Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

$$
\begin{aligned}
& \frac{1}{3} \longmapsto=\frac{1}{|V(G)|} \sum_{v \in V(G)} \longmapsto_{v} \\
& \nabla=\frac{1}{\omega(0)} \sum_{n 0} \nabla \\
& \nabla(0)=\sum_{0} \nabla_{0}^{\binom{-1}{2}} \\
& \nabla(3)-\frac{1}{3} \sum_{0} \nabla_{0}\binom{0}{2}
\end{aligned}
$$

Identities Summary

$$
\begin{aligned}
& =\nabla+\nabla+\nabla+\nabla \\
& \text { i }=\frac{3}{3} \longmapsto+\frac{2}{3} \longmapsto+\frac{1}{3} \longmapsto+\frac{0}{3} \longmapsto \\
& 10 \times R_{0}-\nabla_{0}+\nabla_{0} \\
& 100 \times 0-\frac{\nabla_{2}}{2}+\frac{-2}{2} \nabla_{0} \\
& \nabla=\frac{1}{\pi} \Sigma_{0} \nabla_{0} \quad \nabla=\frac{1}{n_{0}} \Sigma_{0} \nabla_{0}
\end{aligned}
$$

Flag algebras - Example

Theorem (Mantel 1907)
Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges. Assume edges are red and non-edges are blue.

Flag algebras - Example

Theorem (Mantel 1907)
Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume $\wp=0$. (We want to conclude $\quad \leq \frac{1}{2}$.)

Flag algebras - Example

Theorem (Mantel 1907)
Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume $\Downarrow=0$. (We want to conclude $\quad \leq \frac{1}{2}$.)

Flag algebras - Example

Theorem (Mantel 1907)
Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume $\wp=0$. (We want to conclude $\leq \frac{1}{2}$.)

Flag algebras - Example

Theorem (Mantel 1907)
Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume $\longmapsto=0$. (We want to conclude $\leq \frac{1}{2}$.)

$$
i=0 \vee+\frac{1}{3} \bigvee+\frac{2}{3} \bigvee
$$

Flag algebras - Example

Theorem (Mantel 1907)

Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume $\wp=0$. (We want to conclude $\leq \frac{1}{2}$.)

Flag algebras - Example

Theorem (Mantel 1907)

Every triangle-free graph contains at most $\frac{1}{4} n^{2} \approx \frac{1}{2}\binom{n}{2}$ edges.
Assume edges are red and non-edges are blue.
Assume $\wp=0$. (We want to conclude $\quad \leq \frac{1}{2}$.)

$$
\leq \frac{2}{3}
$$

Example - Mantel's theorem

Example - Mantel's theorem

Assume ${ }^{\circ}=0$. (We want to conclude $\leq \frac{1}{2}$.)

$$
\mathfrak{0}=0 \bigvee+\frac{1}{3} \longmapsto+\frac{2}{3} \longmapsto
$$

Idea: find $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that for every graph G

$$
0 \leq c_{1} \wp+c_{2} \longmapsto+c_{3} \longmapsto+o(1) .
$$

Example - Mantel's theorem

Assume $=0$. (We want to conclude $\quad \leq \frac{1}{2}$.)

$$
i=0 \bigvee+\frac{1}{3} \longmapsto+\frac{2}{3} \longmapsto
$$

Idea: find $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that for every graph G

$$
0 \leq c_{1} \wp+c_{2} \longmapsto+c_{3} \longmapsto+o(1) .
$$

After summing together

$$
\mathfrak{\varrho} c_{1} \wp+\left(\frac{1}{3}+c_{2}\right) \longmapsto+\left(\frac{2}{3}+c_{3}\right) \longmapsto
$$

and

$$
\leq \leq \max \left\{0+c_{1}, \frac{1}{3}+c_{2}, \frac{2}{3}+c_{3}\right\} \underbrace{(\square+\underbrace{\bullet}+\cdots)}_{=1}
$$

Example - Mantel's theorem

Assume $=0$. (We want to conclude $\quad \leq \frac{1}{2}$.)

$$
i=0 \bigvee+\frac{1}{3} \longmapsto+\frac{2}{3} \longmapsto
$$

Idea: find $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that for every graph G

$$
0 \leq c_{1} \longmapsto+c_{2} \longmapsto+c_{3} \longmapsto+o(1) .
$$

After summing together

$$
\mathfrak{\varrho} c_{1} \longmapsto+\left(\frac{1}{3}+c_{2}\right) \longmapsto+\left(\frac{2}{3}+c_{3}\right) \longmapsto
$$

and

$$
\mathfrak{b} \leq \max \left\{0+c_{1}, \frac{1}{3}+c_{2}, \frac{2}{3}+c_{3}\right\} \underbrace{(\square+\cdots+\cdots)}_{=1}
$$

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}
$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}

$$
0 \leq \quad\left(\prod_{v}, \prod_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\prod_{v}, \dot{l}_{v}\right)^{T}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
0 & \leq\left(\prod_{v}, \prod_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\prod_{v}, \prod_{v}\right)^{T} \\
& =a ?_{v}^{?}+b ?_{v}+\frac{1}{2} c ?_{v}^{?}+\frac{1}{2} c ? ?
\end{aligned}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
0 & \left(\square_{v}, \prod_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\square_{v}, \square_{v}\right)^{T} \\
& =a ?_{v}^{?}+b ?_{v}^{?}+?_{v}^{?}
\end{aligned}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
0 \leq & \left(\square_{v}, \square_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\square_{v}, \square_{v}\right)^{T} \\
& =a a_{v}^{?}+b ?_{v}^{?}+?_{v}^{?}
\end{aligned}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
0 & \leq \frac{1}{n} \sum_{v}\left(\square_{v}, \bullet_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\prod_{v}, \square_{v}\right)^{T} \\
& =\frac{1}{n} \sum_{v} a ?_{v}^{?}+b ?_{v}^{?}+?_{v}^{?}
\end{aligned}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras－Candidates For c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& 0 \leq \frac{1}{n} \sum_{v}\left(\prod_{v}, \prod_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\prod_{b}, \prod_{v}\right)^{T} \\
& =\frac{1}{n} \sum_{v} a 母_{v}+b ?_{v}+c ?_{v} \\
& =a \vee+\frac{a+2 c}{3} \bigvee+\frac{b+2 c}{3} \vee+b \bigvee \\
& \frac{1}{3} \text { 邓 }=\frac{1}{\mid V(G)} \sum_{v \in V(G)} \bigvee_{v} \\
& \vee=\frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v} \\
& \left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) \succcurlyeq 0 \text { (matrix is positive se } \frac{2}{3} \bigvee=\frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}
\end{aligned}
$$

Flag algebras - Candidates For c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& 0 \leq \frac{1}{n} \sum_{v}\left(\prod_{v}, \prod_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\prod_{b}, \prod_{v}\right)^{T} \\
& =\frac{1}{n} \sum_{v} a ?_{v}+b ?_{v}+c ?_{v}^{?} \\
& =a \vee+\frac{a+2 c}{3} \vee+\frac{b+2 c}{3} \vee \\
& \frac{1}{3} \wp=\frac{1}{|V(G)|} \sum_{v \in V(G)} \longmapsto_{v} \\
& \vee=\frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v} \\
& \left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) \succcurlyeq 0 \text { (matrix is positive se } \frac{2}{3} \bigvee=\frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}
\end{aligned}
$$

Flag algebras - Candidates for c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& 0 \leq \frac{1}{n} \sum_{v}\left(\bigoplus_{v}, \bigoplus_{\square}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\square_{v}, \bigoplus_{v}\right)^{T} \\
& =\frac{1}{n} \sum_{v} a \underbrace{?}_{v}+b ?_{v}^{?}+c ?_{v}^{?} \\
& =a \backsim+\frac{a+2 c}{3} \longrightarrow+\frac{b+2 c}{3} \longrightarrow \\
& c_{1}=a, c_{2}=\frac{a+2 c}{3}, c_{3}=\frac{b+2 c}{3}
\end{aligned}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Using c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& \dot{\varrho}=0 \nabla+\frac{1}{3} \nabla+\frac{2}{3} \nabla \\
& 0 \leq 2 \nabla+\frac{a+2 c}{3} \nabla^{+\frac{b+2 c}{3}} \nabla
\end{aligned}
$$

$$
\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) \succcurlyeq 0 \text { (matrix is positive semidefinite) }
$$

Flag algebras - Using c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& =0+\frac{1}{3} \longrightarrow+\frac{a+2 c}{3} \longrightarrow+\infty+\infty
\end{aligned}
$$

$$
\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) \succcurlyeq 0 \text { (matrix is positive semidefinite) }
$$

Flag algebras - Using c_{1}, c_{2}, c_{3}

$$
\leq \leq \max \left\{a, \frac{1+a+2 c}{3}, \frac{2+b+2 c}{3}\right\}(\underbrace{\infty}
$$

$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \succcurlyeq 0$ (matrix is positive semidefinite)

Flag algebras - Using c_{1}, c_{2}, c_{3}

$$
\begin{gathered}
d=0 \vee+\frac{1}{3} \vee+\frac{2}{3} \text { V } \\
i \leq \max \left\{a, \frac{1+a+2 c}{3}, \frac{2+b+2 c}{3}\right\} \underbrace{\left(\nabla+\frac{a+2 c}{3} \vee+\nabla\right.}_{=1}
\end{gathered}
$$

Try

$$
\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right) .
$$

Flag algebras - Using c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& 1 \cdot \nabla \nabla \\
& 0 \leq a \vee+\frac{a+2 c}{3} \bigvee+\frac{b+2 c}{3} \text { 邓 } \\
& \text { - } \leq \max \left\{a, \frac{1+a+2 c}{3}, \frac{2+b+2 c}{3}\right\} \underbrace{\left(\nabla+\nabla^{\vee}+\boldsymbol{\nabla}\right)}_{=1}
\end{aligned}
$$

Try

$$
\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right) .
$$

It gives

$$
\leq \max \left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{2}\right\}=\frac{1}{2} \text {. }
$$

Flag algebras - Optimizing a, b, c

$$
\mathfrak{b} \max \left\{a, \frac{1+a+2 c}{3}, \frac{2+b+2 c}{3}\right\}
$$

$$
\left.(S D P)\left\{\begin{array}{ll}
\text { Minimize } & d \\
\text { subject to } & a \leq d \\
& \frac{1+a+2 c}{3} \leq d \\
\frac{2+b+2 c}{3} \leq d
\end{array}\right] \begin{array}{ll}
a & c \\
c & b
\end{array}\right) \succcurlyeq 0
$$

(SDP) can be solved on computers using CSDP or SDPA.
Rounding may be needed for exact results.

How to find extremal constructions?

We got

$$
\leq \max \left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{2}\right\}=\frac{1}{2} \text {. }
$$

which is

$$
\underline{0} \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2} \longmapsto
$$

How to find extremal constructions?

$$
i \leq \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2} \longmapsto
$$

How to find extremal constructions?

$$
i \leq \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2} \longmapsto
$$

Suppose G is an extremal graph $\left({ }_{0}=\frac{1}{2}\right)$. Then

$$
\frac{1}{2}=\downarrow \leq \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2}
$$

How to find extremal constructions?

$$
i \leq \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2} \longmapsto
$$

Suppose G is an extremal graph $\left({ }_{0}=\frac{1}{2}\right)$. Then

$$
\frac{1}{2}=\downarrow \leq \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2}
$$

By subtracting $1=\square+\square$ we obtain

$$
0 \leq-\frac{2}{3} \curlyvee \text {. }
$$

How to find extremal constructions?

$$
i \leq \frac{1}{2} \longmapsto+\frac{1}{6} \longmapsto+\frac{1}{2} \longmapsto
$$

Suppose G is an extremal graph $\left(\boldsymbol{Q}^{\circ}=\frac{1}{2}\right)$. Then

$$
\frac{1}{2}=\downarrow \leq \frac{1}{2} \longmapsto+\frac{1}{6}
$$

By subtracting $1=\square+\square$ we obtain

$$
0 \leq-\frac{2}{3} \oslash . \text { Hence } \wp=0 .
$$

$$
0 \leq \max \left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{2}\right\}=\frac{1}{2}
$$

Tells us that that if $\binom{0}{2}$, then

- graphs with coefficients $<\frac{1}{2}$ do not appear in any extremal example
- all subgraphs of extremal example(s) should have $\frac{1}{2}$
- gives possible subgraphs for extremal examples (if not known)
- having $\frac{1}{2}$ does not mean it appears in any extremal example

The semidefinite matrix gives a certificate.

Small experiment with an extra constraint

Solution is $\frac{1}{2}$.

Small experiment with an extra constraint

Solution is $\frac{1}{2}$. What if $=p>\frac{1}{2}$?

Small experiment with an extra constraint

Solution is $\frac{1}{2}$. What if $\quad=p>\frac{1}{2}$?

$$
\text { Minimize subject to } \geq p
$$

Minimize subject to $\geq p$.

Theorem (RazBorov '08)

$$
\geq \geq \frac{(t-1)(t-2 \sqrt{t(t-p(t+1))})(t+\sqrt{t(t-p(t+1))})^{2}}{t^{2}(t+1)^{2}}
$$

where $t=\lfloor 1 /(1-p)\rfloor$. Tight bound.

Minimize subject to $\geq p$.

Theorem (RAZBorov '08)

$$
\geq \geq \frac{(t-1)(t-2 \sqrt{t(t-p(t+1))})(t+\sqrt{t(t-p(t+1))})^{2}}{t^{2}(t+1)^{2}}
$$

where $t=\lfloor 1 /(1-p)\rfloor$. Tight bound.
Nontrivial application of FA.
We will try a simple approach for $p=0.6$

Theorem (RAZBorov '08)

$$
\geq \geq \frac{(t-1)(t-2 \sqrt{t(t-p(t+1))})(t+\sqrt{t(t-p(t+1))})^{2}}{t^{2}(t+1)^{2}}
$$

where $t=\lfloor 1 /(1-p)\rfloor$. Tight bound.
Nontrivial application of FA.
We will try a simple approach for $p=0.6$
(We not will reproduce the result)

Note: Liu, Pikhurko, Staden: more exact results 2020 (99 or 144 pages)

Minimize subject to ≥ 0.6.

$$
\text { Minimize subject to } \geq 0.6 \text {. }
$$

$$
\begin{aligned}
& \text { Minimize subject to } \geq 0.6 \text {. } \\
& \nabla=\nabla \cdot \nabla \cdot \nabla \cdot \nabla+\nabla \\
& \nabla=m=m(0,0,4) \\
& \mathrm{l}=\nabla \nabla+\frac{2}{3} \nabla+\mathrm{s}^{2} \nabla+\nabla
\end{aligned}
$$

$$
0.6 \leq
$$

$$
0.6 \leq \text { subject to }
$$

$$
0.6 \leq
$$

$$
0 \leq-0.6
$$

$$
\text { W }=0 \vee+0 \vee+0 \vee+\text { 际 }\{0,0,0,1\}
$$

$$
0 \leq-0.6 \wp+\left(\frac{1}{3}-0.6\right) \longmapsto+\left(\frac{2}{3}-0.6\right) \wp+0.4 叉
$$

$$
\begin{aligned}
& \text { 叉 }=0 \vee+0 \vee+0 \vee+\bigvee \\
& \Downarrow \geq \min \{0,0,0,1\}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq-0.6 \bigvee+\left(\frac{1}{3}-0.6\right) \bigvee+\left(\frac{2}{3}-0.6\right) \bigvee+0.4 \bigvee \\
& 0 \leq \frac{1}{n} \sum_{v}\left(\prod_{v}, \dot{l}_{v}\right)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)\left(\prod_{v}, \dot{C}_{v}\right)^{T} \\
& 0 \leq a \vee+\frac{a+2 c}{3} \vee+\frac{b+2 c}{3} \vee+b \vee
\end{aligned}
$$

$$
0 \geq d\left(0.6 \longrightarrow+\left(0.6-\frac{1}{3}\right)\right.
$$

$$
\left(\begin{array}{lll}
a & c & 0 \\
c & b & 0 \\
0 & 0 & d
\end{array}\right) \succcurlyeq 0 \text { (matrix is positive semidefinite) }
$$

$$
0 \geq-a
$$

$$
\begin{aligned}
\bigotimes \geq \min & \left\{0.6 d-a,\left(0.6-\frac{1}{3}\right) d-\frac{a+2 c}{3},\right. \\
& \left.\left(0.6-\frac{2}{3}\right) d-\frac{b+2 c}{3}, 1-0.4 d-b\right\}
\end{aligned}
$$

Numerical solution from CSDP:

$$
\begin{array}{ll}
a=6 \times 0.1200006508849779385 & a=0.72 \\
b=6 \times 0.05333290843810910981 & b=0.32 \\
c=6 \times-0.07999989818128358521 & c=-0.48 \\
d=1.400006454027185265 & d=1.4
\end{array}
$$

$$
\longmapsto \geq \min \{0.12,0.45 \overline{3}, 0.12,0.12\}=0.12
$$

How to improve $0.12 ?$

≥ 0.14150099
Sample bigger graphs. Instead of

$$
1=\vee+\cdots+\cdots
$$

use

$$
1=>+\infty+\cdots+\infty
$$

How to improve $0.12 ?$

≥ 0.14150099
Sample bigger graphs. Instead of

$$
1=队+\vee+\cdots
$$

use

$$
1=\square+\cdots+\cdots
$$

and include also $M, P \succcurlyeq 0$

$$
\begin{aligned}
& 0 \leq(\stackrel{\square}{\nabla}^{2}, \stackrel{1}{\nabla}^{2} \overbrace{}^{2}, \nabla^{1} \nabla^{2}, \stackrel{\square}{\nabla}^{2})^{T} M(\stackrel{\square}{\nabla}^{2}, \stackrel{\square}{\nabla}^{1}, \overbrace{}^{2} \nabla^{2}, \stackrel{q}{\nabla}^{2}) \\
& 0 \leq\left(\nabla^{1} \nabla^{2},{\stackrel{1}{\nabla^{2}}}^{2}, \nabla^{1} \nabla^{2}, \stackrel{1}{\nabla}^{2}\right)^{T} P\left(\nabla^{1} \nabla^{2}, \stackrel{1}{\nabla}^{2},{\stackrel{1}{\nabla^{2}}}^{2}, \nabla^{1} \nabla^{2}\right)
\end{aligned}
$$

How to improve $0.12 ?$

≥ 0.14150099
Sample bigger graphs. Instead of

$$
1=队+\vee+\cdots
$$

use

$$
1=\square \times \infty+\infty
$$

and include also $M, P \succcurlyeq 0$

$$
\begin{aligned}
& 0 \leq(\stackrel{\square}{\nabla}^{2}, \stackrel{1}{\nabla}^{2} \overbrace{}^{2}, \nabla^{1} \nabla^{2}, \stackrel{\square}{\nabla}^{2})^{T} M(\stackrel{\square}{\nabla}^{2}, \stackrel{\square}{\nabla}^{1}, \overbrace{}^{2} \nabla^{2}, \stackrel{q}{\nabla}^{2}) \\
& 0 \leq\left(\nabla^{1} \nabla^{2}, \nabla^{1} \nabla^{2}, \nabla^{1} \nabla^{2}, \stackrel{1}{\nabla}^{2}\right)^{T} P(\nabla^{1} \nabla^{2},{\stackrel{1}{\nabla^{2}}}^{2}, \overbrace{}^{1} \nabla^{2}, \nabla^{1} \nabla^{2})
\end{aligned}
$$

This gives

$$
\longmapsto \geq 0.127815 \ldots
$$

How to improve 0.12781...?

≥ 0.14150099
Sample even bigger graphs.
Use K_{5} instead of K_{4}
Include even more types and flags.

How to improve 0.12781...?

≥ 0.14150099
Sample even bigger graphs.
Use K_{5} instead of K_{4} Include even more types and flags.
This gives
$\longmapsto \geq 0.1333333=2 / 15$.

How to improve 0.12781...?

≥ 0.14150099
Sample even bigger graphs.
Use K_{5} instead of K_{4} Include even more types and flags.
This gives

$$
V^{2} \geq 0.1333333=2 / 15
$$

Try even bigger!

How to improve 0.12781...?

≥ 0.14150099
Sample even bigger graphs.
Use K_{5} instead of K_{4}
Include even more types and flags.
This gives

$$
\nabla \geq 0.1333333=2 / 15
$$

Try even bigger!

vertices	\# graphs	time	bound
3	4	instant	0.12
4	11	instant	$0.127815 \ldots$
5	34	instant	$0.13333 \ldots$
6	156	seconds	$0.13333 \ldots$
7	1044	minutes	$0.13333 \ldots$
8	12346	day(s)	$0.13333 \ldots$
9	274668	not computable	$?$

\star needs hundreds of GB of RAM, maybe easy in 10 years?

Getting 0.14150099...

$$
\left\{\begin{array}{l}
\text { Minimize } \\
\text { subject to }
\end{array}\right.
$$

Getting 0.14150099...

$$
\left\{\begin{array}{l}
\text { Minimize } \\
\text { subject to } H \cdot\left(e_{0}-p\right) \geq 0 \text { for any graph } H
\end{array}\right.
$$

Getting 0.14150099...

\& $0.14150099 \ldots$ for $p=0.6$ by Razborov

vertices	\# graphs	time	bound	new bound
3	4	instant	0.12	0.12
4	11	instant	$0.12781 \ldots$	$0.131746 \ldots$
5	34	instant	$0.13333 \ldots$	$0.14046241 \ldots$
6	156	seconds	$0.13333 \ldots$	$0.14150099 \ldots$
7	1044	minutes	$0.13333 \ldots$	$0.14150099 \ldots$
8	12346	day(s)	$0.13333 \ldots$	$0.14150099 \ldots$

These are just numerical bounds! Not exact.

Goodman's Bound

Recall we got for $p=0.6$

$$
\begin{aligned}
& \Downarrow \geq \min \left\{0.6 d-a,\left(0.6-\frac{1}{3}\right) d-\frac{a+2 c}{3},\right. \\
&\left.\left(0.6-\frac{2}{3}\right) d-\frac{b+2 c}{3}, 1-(1-0.6) d-b\right\}
\end{aligned}
$$

Goodman's Bound

Recall we got for $p=0.6$

$$
\begin{aligned}
& \vee \geq \min \left\{0.6 d-a,\left(0.6-\frac{1}{3}\right) d-\frac{a+2 c}{3}\right. \\
&\left.\left(0.6-\frac{2}{3}\right) d-\frac{b+2 c}{3}, 1-(1-0.6) d-b\right\}
\end{aligned}
$$

Same thing holds when 0.6 is replaced by a parameter p.

Goodman's Bound

Recall we got for $p=0.6$

$$
\begin{aligned}
W \geq \min & \left\{0.6 d-a,\left(0.6-\frac{1}{3}\right) d-\frac{a+2 c}{3}\right. \\
& \left.\left(0.6-\frac{2}{3}\right) d-\frac{b+2 c}{3}, 1-(1-0.6) d-b\right\}
\end{aligned}
$$

Same thing holds when 0.6 is replaced by a parameter p.

$$
a=2 p^{2} \quad b=2 p^{2}-4 p+2 \quad c=p(2 p-2) \quad d=4 p-1
$$

gives Goodman's bound:

$$
\longmapsto \geq 2 p^{2}-p
$$

Goodman's Bound

Recall we got for $p=0.6$

$$
\begin{aligned}
\square \min & \left\{0.6 d-a,\left(0.6-\frac{1}{3}\right) d-\frac{a+2 c}{3}\right. \\
& \left.\left(0.6-\frac{2}{3}\right) d-\frac{b+2 c}{3}, 1-(1-0.6) d-b\right\}
\end{aligned}
$$

Same thing holds when 0.6 is replaced by a parameter p.

$$
a=2 p^{2}
$$

$$
b=2 p^{2}-4 p+2
$$

$$
c=p(2 p-2)
$$

$$
d_{1}=4 p-1
$$

gives Goodman's bound:

$$
\longrightarrow \geq 2 p^{2}-p
$$

This is tight for $p \in\left\{\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\}$.

Thank you!

