Almost all k-sat functions are unate

József Balogh Dingding Dong Bernard Lidický Nitya Mani Yufei Zhao

AMS Sectional Meeting \#1184
Mar 18, 2023

Question

Count functions

$$
f:\{0,1\}^{n} \rightarrow\{0,1\} \quad 2^{2^{n}}
$$

$k-S A T$ FUNCTION can be defined as

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}\right)=C_{1} \vee C_{2} \vee \cdots \vee C_{m} \\
C_{i}=\underbrace{z_{1} \wedge z_{2} \wedge \cdots \wedge z_{k}}_{\text {all different }} \quad z_{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n}, \neg x_{n}\right\}
\end{gathered}
$$

x_{i} variable, C_{i} clause, z_{i} literal
example $k=3$

$$
\begin{gathered}
x_{1} \wedge x_{2} \rightarrow\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \\
x_{1} \wedge x_{2} \wedge \neg x_{2} \rightarrow \text { always false }
\end{gathered}
$$

Every k-SAT function has a formula but the formula may not be unique.
number of $f:\{0,1\}^{n} \rightarrow\{0,1\}$
number of k-SAT formula $2^{2^{k}\binom{n}{k}}$
number of k-SAT functions?
k-SAT formula is monotone if it uses only $x_{1}, x_{2}, \ldots, x_{n}$, (i.e. no $\neg x_{i}$ is used)
All monotone k-SAT formula give different functions

$$
g \notin x_{1} \wedge \cdots \wedge x_{k} \ni f \quad f \neq g \text { at } x_{1}=\cdots=x_{k}=1, x_{k+1}=\cdots=x_{m}=0
$$

Number of monotone k-SAT functions $2\binom{n}{k}$
k-SAT formula is unate if it uses at most one of $\left\{x_{i}, \neg x_{i}\right\}=\left\{x_{i}, \overline{x_{i}}\right\}$ Number of unate k-SAT functions $(1+o(1)) 2^{n+(}\binom{n}{k}$
Functions avoiding x_{i} counted multiple times

Conjecture (Bollobás, Brightwell, Leader 2003)

Fix $k \geq 2,1-o(1)$ fraction of $k-S A T$ functions are unate as $n \rightarrow \infty$.

- \# 2-SAT functions is $2^{(1+o(1))\binom{n}{2}}$. Bollobás, Brightwell, Leader 2003 using Szemerédi regularity lemma
- Conjecture true for $k=2$ Allen 2007 using Szemerédi regularity lemma
- Conjecture true for $k=2$ llinca, Kahn 2009 without Szemerédi regularity lemma
- Conjecture true for $k=3$ Ilinca, Kahn 2012 using hypergraph regularity lemma
- Conjecture true for $k=4,5$ Dong, Mani, Zhao 2022

Conjecture true for all k :-) Balogh, Dong, Lidický, Mani, Zhao 2022+

- $\left\{C_{1}, \ldots, C_{m}\right\}$ is minimal if deleting any C_{i} changes the function.
- i.e. for every C_{i} exists $X \in\{0,1\}^{n}$ s.t. only C_{i} is satisfied $\{w x, w y, x \bar{z}, \bar{y} z\}$ is not minimal

Idea: forbid non-minimal formula and transform to a Turán type problem. k-uniform hypergraph

$$
V=\left\{x_{1}, \ldots, x_{n}\right\} \quad E=\binom{\left\{x_{1}, \ldots, x_{n}\right\}}{k}
$$

Count the number of hypergraphs not containing forbidden configurations. (forbidden configuration is a non-minimal formula)

- Trouble 1: How to reduce $\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}\right\}$ to n vertices and identify forbidden configurations?
Dong, Mani, Zhao using blow-up, saturation, container method
- Trouble 2: How to solve the resulting hypergraph extremal problem? BDLMZ: computer free flag-algebra

Directed Hyergraph Turán Problem

Partially directed k-graph is a k-uniform hypergraph, where every edge is

- undirected
- rooted at one vertex (directed towards one vertex)
$\vec{H} \subseteq \vec{G}$ if \vec{H} could be obtained from \vec{G} by removing some vertices, edges, or orientations.

\vec{T}_{k}
- $\vec{T}_{2}=\{\hat{1} 2,13,23\}$
- $\vec{T}_{3}=\{\hat{1} 24,134,234\}$
- $\vec{T}_{k}=\{\hat{1} 24 \cdots k+1,134 \cdots k+1,234 \cdots k+1\}$

Extremal problem

G is k-uniform, n-vertex, \vec{T}_{k}-free.

$$
\bullet \bullet \bullet \bullet:=\alpha:=\frac{e_{\text {undirected }}(G)}{\binom{n}{k}} \quad \bullet \bullet \bullet \bullet:=\beta:=\frac{e_{\text {directed }}(G)}{\binom{n}{k}}
$$

Given k, θ, what is

$$
\max \{\alpha+\theta \beta\} ?
$$

Special case:
Show $\alpha+\theta \beta \leq 1$ when $1 \leq \theta \leq\left(1-\frac{1}{k}\right)^{1-k} \approx e$ Constructions:

Complete undirected graph

Conjecture (Bollobás, Brightwell, Leader 2003)

Fix $k \geq 2$, almost all k-SAT functions are unate.
Theorem (Dong, Mani, Zhao)
If $\alpha+\theta \beta \leq 1$ when $\log _{2} 3<\theta$ then almost all k-SAT functions are unate.
The above theorem is a lot of work.

Theorem (Dong, Mani, Zhao)
Conjecture true for $k \leq 5$.
Theorem (Balogh, Dong, Lidický, Mani, Zhao)
Conjecture for all k.

Containers

- few containers
- each minimal k-SAT formula is a subformula of at least one container
- Undirected edge $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ in container gives

$$
x_{1} x_{2} \cdots x_{k} \text { or nothing }
$$

- Directed edge $\left\{\hat{x}_{1}, x_{2}, \ldots, x_{k}\right\}$ in container gives

$$
x_{1} x_{2} \cdots x_{k} \text { or } \bar{x}_{1} x_{2} \cdots x_{k} \text { or nothing }
$$

- One container with $\alpha\binom{n}{2}$ undirected edges and $\beta\binom{n}{2}$ directed edges gives up to $2^{\alpha\binom{n}{2} 3^{\beta\binom{n}{2}}=2^{\left(\alpha+\beta \log _{2} 3\right)\binom{n}{2}} k \text {-SAT formulas }}$

Theorem (Füredi 1992)
$e\left(G^{2}\right) \geq e(G)-\left\lfloor\frac{n}{2}\right\rfloor$ where $E\left(G^{2}\right)=\{(x, y): \exists z, x z, y z \in E(G)\}$
Theorem (Dong, Mani, Zhao)
For $k=2$: $\alpha+2 \beta \leq 1+o(1)$

Proof.

- \vec{H} be \vec{T}_{2}-free graph
- G underlying graph (forget orientation)

$$
e(G)=(\alpha+\beta)\binom{n}{2}
$$

- $x y \in E(G)$ and $x y \in E\left(G^{2}\right)$ means $x y$ was undirected in \vec{H}.

$$
\binom{n}{2} \geq(\alpha+\beta)\binom{n}{2} \geq e\left(G^{2}\right)+\beta\binom{n}{2} \geq e(G)+\beta\binom{n}{2}-\frac{n}{2}=(\alpha+2 \beta)\binom{n}{2}-\frac{n}{2}
$$

- Averaging via link-graphs of $v \in \vec{H}$:

$$
\begin{gathered}
\pi\left(\vec{T}_{k}, \frac{(k-1) \theta+1}{k}\right) \leq \pi\left(\vec{T}_{k-1}, \theta\right) \\
\pi\left(\vec{T}_{3}, \frac{5}{3}\right) \leq \pi\left(\vec{T}_{2}, 2\right)
\end{gathered}
$$

- $\frac{5}{3}>\log _{2} 3$ implying case $k=3$
- cases $k=4,5$ slightly more complicated

Theorem (Balogh, Dong, Lidický, Mani, Zhao)
All values of k.

PROOF FOR $k=4$

$$
\text { for } \theta=1+\frac{1}{\sqrt{2}} \geq 1.707>\log _{2} 3 \quad a=\frac{1}{\sqrt{2}}, b=\frac{k(\theta-1)-1}{\sqrt{2}} \quad k \geq 4
$$

$$
\begin{aligned}
& \alpha+\theta \beta \\
& =\bullet \bullet \bullet \bullet+\theta \bullet \bullet \bullet \bullet
\end{aligned}
$$

$$
\begin{aligned}
& \leq 1
\end{aligned}
$$

PROOF FOR $k=2$ AND $k=3$

Theorem (Balogh, Dong, Lidický, Mani, Zhao) If \vec{T}_{k} is forbidden, then $\bullet \bullet \bullet \bullet+\left(1+\frac{1}{\sqrt{2}}\right) \stackrel{\bullet}{\bullet} \bullet \leq 1$ for all k.

Question
If \vec{T}_{k} is forbidden, then $\bullet \bullet \bullet \bullet+\left(1-\frac{1}{k}\right)^{1-k} \stackrel{\bullet \bullet \bullet}{\bullet}-1$ for all k ?

