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Flag Algebras and Its Application

We will only consider large graphs (or networks).

Here is a graph of the internet from a while back to show there are large graphs that are

interesting.



Inspirational Problem

• Let n be a fixed number of vertices in a graph G .

• Assume G has m edges.

∈ [0,
(n
2

)
]

• What is the number of triangles in G?

∈ [0,
(n
3

)
]

edge is

triangle is

Liu, Pikhurko, Staden 2020 (144 pages)

Consider n → ∞.
# Edges = p

(n
2

)
# Triangles = t

(n
3

)
Now p, t ∈ [0, 1].

p

t

1
2

1

1

0

Upper bound p3/2 Kruskal-Katona 1964
Asymptotic lower bound by Razborov 2008
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Flag Algebras and Its Application

Inspirational Problem

The edge (0,0) to (1/2,0) is Mantel’s theorem. The sharp points are Turán graphs. The figure

is exaggerated to show the idea if the shape.



Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic Logic 72
(2007), 1239–1282.
David P. Robbins Prize by AMS for Razborov in 2013 over
300 citations (on Google)

Example
If density of edges is p, what is the minimum density of triangles?

• Designed to attack extremal problems.

• Works well if constraints as well as desired value can be computed by checking small
subgraphs (or average over small subgraphs).

• The results are for the limit as graphs get very large.
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Example extremal problem

Theorem (Mantel 1907)

Every n-vertex triangle-free graph contains at most 1
4n

2 edges.

Problem
Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

• local condition and global parameter (computable locally)

• threshold

• bound and extremal example
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Proof of Mantel’s Theorem

Theorem (Mantel 1907)

In every n-vertex triangle-free graph |E | ≤ 1
4n

2.

Proof.

n|E | ≥
∑
ij∈E

(di + dj)︸ ︷︷ ︸
≤n

=
∑
i∈V

d2
i ≥ (

∑
i∈V di )

2

n
=

4|E |2
n

Cauchy-Schwarz (
∑

i aibi )
2 ≤∑i a

2
i ·
∑

i b
2
i with bi = 1.

Cauchy-Schwarz (
∑

i ai1)
2 ≤∑i a

2
i ·
∑

i 1
2.
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Flag Algebras and Its Application
Flag Algebras

Proof of Mantel’s Theorem

|E | is number of edges
di is a degree of a vertex i . di + dj ≤ n because the graph is triangle-free.

We will try to rewrite the proof using densities and this should get us familiar with flag algebras

notation.



Flag algebras definitions

Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.
# /

(n
3

)
.

The probability that three random vertices in G span exactly two
edges. # /

(n
3

)
.

1

The probability that a random vertex other than 1 is adjacent to 1

= deg( 1 )/(n − 1).

+ =

1

Flags
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Theorem (Mantel 1907)

In every n-vertex triangle-free graph |E | ≤ 1
4n

2.

If = 0 then ≤ 1
2

n2|E | ≥ n
∑
ij∈E

(di + dj)︸ ︷︷ ︸
≤n

=
∑
i∈V

12 ·
∑
i∈V

d2
i ≥ (

∑
i∈V

1 · di )2 = 4|E |2

n2 × n2

2
≥
∑
1 ∈V

1
2 ·
∑
1 ∈V

(
1

n

)2

≥

∑
1 ∈V

1 ·
1

n


2

= 4

(
n2

2

)2

1

2
≥ 1

n

∑
1 ∈V

1
2 · 1

n

∑
1 ∈V

(
1

)2

≥

1

n

∑
1 ∈V

1 ·
1


2

=
2

|E | =
(n
2

)
≈ n2

2 , d1 =
1

(n − 1) ≈
1

· n, 1 = 1
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We are ignoring lower order terms and approximate
(
n
k

)
by nk

k! .



n2|E | ≥ n
∑
ij∈E
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n
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1 ·
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1

2
≥

r
1
2
z
·
t

1

2|

≥
t

1 ·
1

|2

=
2

1
n

∑
1 ∈V f = Jf K

Cauchy-Schwarz:
q
f 2

y
·
q
g2

y
≥ Jf · gK2. In particular,

q
f 2

y
≥ 0.
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1

2
≥

r
1
2
z
·
t

1

2|

= 1 ·
s

1
+

1

{
=

s

1

{

1

×
1

=
1

+ o(1) =
1

+
1

+ o(1)

1

×
1

=
1

2 1
=

1

2 1
+

1

2 1

1 = not choosing anything = 1

1

= probability of choosing a vertex . . . deg( 1 )/(n − 1)

1
= probability of choosing two distinct vertices . . .

(deg( 1 )

2

)
/
(n−1

2

)

= 0
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Probability of choosing a vertex inducing an edge with the fixed vertex 1.
Probability of choosing a pair of distinct vertices each being in an edge with the fixed vertex 1.
Notice on the left each pair of vertices counted twice!

We will ignore o(1) in the future
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2
≥

s

1

{

=
1

3

≥ 2

3

s

1

{
=

1

n

∑
1 ∈V

1
=

1

3

1
= probability of choosing two distinct vertices . . .

(deg( 1 )

2

)
/
(n−1

2

)
∑
1 ∈V

1

(
n − 1

2

)
= #

= probability of choosing three distinct vertices . . .# /
(n
3

)
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Proof recap

If =
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= 0 then ≤ 1/2.
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Different proof of = 0 implies ≤ 1/2
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Automated approach

≤ +

u

v
(

1

−
1

)2
}

~ =
1

2
+
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6
+

1

2

≤ 1

2

(
+ +

)
=

1

2

In general as sum of squares

f ≤ f +
∑
h

Jh2K =
∑
G∈Fn

cG · G ≤ max
G∈Fn

cG

f , g linear combination of flags
Fn . . . flags on n vertices
SOS proofs can be optimized by semidefinite programming
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Make the subscript of Max under



Rainbow Triangles

17



Rainbow Triangles
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Joints

Joint in Rd is a point where d lines that span Rd intersect.
What is the maximum number of joints for N lines?

Theorem (Chao and Hans Yu 2023+)

Number of joints is maximized by k hyperplanes whose intersection give N =
( k
d−1

)
lines and

(k
d

)
joints.

Assymptotically by Hans Yu and Zhao 2023.

Multijoint problem: In R3, lines of three colors, maximize rainbow joints.
hyperplane → vertex
intersection of hyperplanes → edge
joint → rainbow triangle

Theorem (Chao and Hans Yu 2024+)

In 3-edge colored graph
(
#

)2
≤ 2

(
#

)
·
(
#

)
·
(
#

)
.

18



Joints

Joint in Rd is a point where d lines that span Rd intersect.
What is the maximum number of joints for N lines?

Theorem (Chao and Hans Yu 2023+)

Number of joints is maximized by k hyperplanes whose intersection give N =
( k
d−1

)
lines and

(k
d

)
joints.

Assymptotically by Hans Yu and Zhao 2023.

Multijoint problem: In R3, lines of three colors, maximize rainbow joints.
hyperplane → vertex
intersection of hyperplanes → edge
joint → rainbow triangle

Theorem (Chao and Hans Yu 2024+)

In 3-edge colored graph
(
#

)2
≤ 2

(
#

)
·
(
#

)
·
(
#

)
.

18



Joints

Multijoint problem: In R3, lines of three colors, maximize rainbow joints.
hyperplane → vertex
intersection of hyperplanes → edge
joint → rainbow triangle

Theorem (Chao and Hans Yu 2024+)

In 3-edge colored graph
(
#

)2
≤ 2

(
#

)
·
(
#

)
·
(
#

)
.

In flag algebras ( )2
≤ 9 · ·

Automated sum-of-squares proof needs 540GB RAM

18



Joints

Multijoint problem: In R3, lines of three colors, maximize rainbow joints.
hyperplane → vertex
intersection of hyperplanes → edge
joint → rainbow triangle

Theorem (Chao and Hans Yu 2024+)

In 3-edge colored graph
(
#

)2
≤ 2

(
#

)
·
(
#

)
·
(
#

)
.

In flag algebras ( )2
≤ 9 · ·

Automated sum-of-squares proof needs 540GB RAM

2
0
2
5
-1
2
-1
2
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Joints

Motivation is for joins - one take lined colored reg, green and blue and asks for rainbow lines.
Their proof uses entropy method.

1,601,952 configurations and 540GB ram



Balogh, Bradshaw, Garcia, L. 2025+
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Can be written without flags, a simple counting proof.



Theorem (Chao and Hans Yu 2024+)

≤ 3

√
· ·

Theorem (Balogh, Bradshaw, Garcia, L.
2025+)

≤ 3

2
·
(

× ×
)2/3

We also have exactness and translation to counting and a short entropy proofs.
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Theorem (Chao and Hans Yu 2024+)

≤ 3

√
· ·

Theorem (Balogh, Bradshaw, Garcia, L.
2025+)

≤ 3

2
·
(

× ×
)2/3

We also have exactness and translation to counting and a short entropy proofs.2
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Flag Algebras and Its Application
Flag Algebras

We also have exactness results.



Further Directions

Question

Let G be a graph with edges colored by colors {1, . . . , 6}. Denote by Ci the number of
edges colored by color i . Let H be the number of rainbow copies of K4 in G. Is it true
that H ≤ 3

√∏
i Ci?

21
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Question

Let G be a graph with edges colored by colors {1, . . . , 6}. Denote by Ci the number of
edges colored by color i . Let H be the number of rainbow copies of K4 in G. Is it true
that H ≤ 3

√∏
i Ci?2
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Flag Algebras and Its Application
Flag Algebras

Further Directions

We note how to do it for a fixed rainbow coloring



Mathematical Biology

22



Phylogeny

How do we reconstruct an evolutionary history (phylogeny) from observations of living
species from characters?

Spine Fur Fins Wings

Seal 1 1 1 0
Dog 1 1 0 0
Lizard 1 0 0 0

Butterfly 0 0 0 1
Worm 0 0 0 0

23



Phylogeny

c1 c2 c3 c4
s1 1 1 1 0
s2 1 1 0 0
s3 1 0 0 0
s4 0 0 0 1
s5 0 0 0 0

c1 c2 c3 c4
0 0 0 0

1 0 0 0

1 1 0 0

0 0 0 0

1 1 1 0
s1

1 1 0 0
s2

1 0 0 0
s3

0 0 0 1
s4

0 0 0 0
s5

c1

c2

c3

c4

24



Assumptions and Problems

Perfect phylogeny model is fundamental, but inaccurate

Lemma (Three-Gamete Condition, Hudson-Kaplan ’85)

A set of species and characters has a perfect phylogeny if and only if for every pair of
traits, no three species present all of the combinations 10, 01, 11.

Spine Fins

Seal 1 1
Lizard 1 0

Butterfly 0 0

Spine Wings

Bird 1 1
Lizard 1 0

Butterfly 0 1

25



Incidence Graph

Spine Fur Fins Wings

Seal 1 1 1 0
Dog 1 1 0 0
Lizard 1 0 0 0

Butterfly 0 0 0 1
Worm 0 0 0 0

Seal

Dog

Lizard

Butterfly

Worm

Spine

Fur

Fins

Wings

Claim

The incidence graph contains no induced copies of if and only if the

three-gamete condition is satisfied

26



Main Problem

Problem

How many induced copies of M = can we possibly have?

Counting M measures how far from perfect.

• Inducibility problem in red-blue graphs

• Bipartite graphs with fixed two-colorings

• Isomorphisms are graph isomorphisms and preserve colors

27



Results

Theorem (Eulenstein, Halfpap, L., Miyasaki, Pfender, Volec
2025+)

Fix α > 0. Let Gr ,b be a red-blue graph with r red vertices and b blue vertices with
r
b = α. Then

# ≤ r2b3

81
+ o(r2b3)

Corollary (EHLMPV)

If Gn is a red-blue graph on n vertices then

# ≤ 2234n5

155
+ o(n5).

28



Asymptotic Extremal Examples

b
3

r
3

b
3

r
3

b
3

r
3

Figure: C6(r , b)

3n
15

2n
15

3n
15

2n
15

3n
15

2n
15

Figure: C6(n)
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Future Directions

• Determine lower-order terms and stronger characterizations

b + 1

b

b

r

r

r

V4V3

V2

V1 V6

V5

34



ε-similar Triangles
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ε-similar Triangles
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https://arxiv.org/abs/2101.10304
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Problem

Let T be a triangle and n ∈ N fixed.

(and ε > 0 fixed)

Which n points in R2 maximize the number of triangles similar to T?

T

T1 and T2 are ε-similar if their inner angles differ by at most ε.
(OK to move, scale, rotate, ε-perturb)

36
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Lower bound construction

Let T be a triangle and n ∈ N fixed. (and ε > 0 fixed)
Which n points in R2 maximize the number of triangles similar to T?

T

h(n,T , ε) := max # of ε-similar triangles to T , it is at least 1
4

(n
3

)
(1 + o(1)).

37
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Results

Theorem (Bárány and Füredi (2019))

For almost every triangle T there is an ε0 > 0 such that for all 0 < ε ≤ ε0,

h(n,T , ε) ≤ 0.25072

(
n

3

)
(1 + o(1)).

If T is equilateral, then h(n,T , ε) = 1
4

(n
3

)
(1 + o(1))

Theorem (Balogh, Clemen, L. (2022))

For almost every triangle T there is an ε0 > 0 such that for all 0 < ε ≤ ε0,

h(n,T , ε) =
1

4

(
n

3

)
(1 + o(1)).

h(n,T , ε) := max # of ε-similar triangles to T , it is at least 1
4

(n
3

)
(1 + o(1)).
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Let T and ε are given

• Fix n points in the plane.

• For every T ′ ε-similar to T , add a 3-edge

• Investigate the resulting hypergraph H

H has no subhypergaph in F = {K 3
4 , . . .}

T

Theorem (Balogh, Clemen, L. (2022))

F-free hypergraph has at most 1
4

(n
3

)
(1 + o(1)) edges.

All triangles?

T

Other Shapes? in Rd?

T
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Counting k-SAT functions

40



Question

Count functions
f : {0, 1}n → {0, 1} 22

n

k-SAT FUNCTION can be defined as

f (x1, . . . , xn) = C1 ∨ C2 ∨ · · · ∨ Cm

Ci = z1 ∧ z2 ∧ · · · ∧ zk︸ ︷︷ ︸
all different variables

zi ∈ {x1,¬x1, x2,¬x2, . . . , xn,¬xn}

xi variable, Ci clause, zi literal
example k = 3

x1 ∧ x2 → (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3)
x1 ∧ x2 ∧ ¬x2 → always false

Every k-SAT function has a formula but the formula may not be unique.

41



number of f : {0, 1}n → {0, 1} 22
n

number of k-SAT formula 22
k(nk)

number of k-SAT functions?

k-SAT formula is monotone if it uses only x1, x2, . . . , xn, (i.e. no ¬xi is used)

All monotone k-SAT formula give different functions

g ̸∈ x1 ∧ · · · ∧ xk ∋ f f ̸= g at x1 = · · · = xk = 1, xk+1 = · · · = xm = 0

Number of monotone k-SAT functions 2(
n
k)

k-SAT formula is unate if it uses at most one of {xi ,¬xi} = {xi , xi}
Number of unate k-SAT functions (1 + o(1))2n+(

n
k)

Functions avoiding xi counted multiple times
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Conjecture (Bollobás, Brightwell, Leader 2003)

Fix k ≥ 2, 1− o(1) fraction of k-SAT functions are unate as n → ∞. (1 + o(1))2n+(
n
k)

• # 2-SAT functions is 2(1+o(1))(n2). Bollobás, Brightwell, Leader 2003
using Szemerédi regularity lemma

• Conjecture true for k = 2 Allen 2007
using Szemerédi regularity lemma

• Conjecture true for k = 2 Ilinca, Kahn 2009
without Szemerédi regularity lemma

• Conjecture true for k = 3 Ilinca, Kahn 2012
using hypergraph regularity lemma

• Conjecture true for k = 4, 5 Dong, Mani, Zhao 2022

Conjecture true for all k :-) Balogh, Dong, Lidický, Mani, Zhao
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• Step 1: Reduction to a Turán type problem
Dong, Mani, Zhao using blow-up, saturation, container method

• Step 2: Solving the extremal problem
Balogh, Dong, L,, Many, Zhao: computer free flag-algebra
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Directed Hyergraph Turán Problem

Partially directed k-graph is a k-uniform hypergraph, where every edge is

• undirected

• rooted at one vertex (directed towards one vertex)

H⃗ ⊆ G⃗ if H⃗ could be obtained from G⃗ by removing some vertices, edges, or
orientations.

a

b c

d

⊆

a

b c

d

e
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T⃗k

• T⃗2 = {1̂2, 13, 23} 1 2 3
1 2
1 3

2 3

• T⃗3 = {1̂24, 134, 234} 1 2 3 4
1 2 4
1 3 4

2 3 4

• T⃗k = {1̂24 · · · k + 1, 134 · · · k + 1, 234 · · · k + 1}
1 2 3 4 5
1 2 4 5
1 3 4 5

2 3 4 5

2

1

3

2

1

3

4

2

1

3
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Extremal problem

G is k-uniform, n-vertex, T⃗k -free.

1 2 3 4
1 2 3 4

α :=
eundirected(G )(n

k

) 1 2 3 4
1 2 3 4

β :=
edirected(G )(n

k

)
Given k, θ, what is

max{α+ θβ}?
Special (open) case:

Show α+ θβ ≤ 1 when 1 ≤ θ ≤
(
1− 1

k

)1−k ≈ e
Constructions:

Complete undirected graph

n/k (1− 1/k)n
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Conjecture (Bollobás, Brightwell, Leader 2003)

Fix k ≥ 2, almost all k-SAT functions are unate.

Theorem (Dong, Mani, Zhao)

If α+ θβ ≤ 1 for some θ > log2 3 then almost all k-SAT functions are unate.

This theorem is a lot of work. Uses hypergraph containers by Balogh, Morris, Samotij; Saxton,

Thomasson (AMS Steele prize 2024)

Theorem (Dong, Mani, Zhao)

Conjecture true for k ≤ 5.

Theorem (Balogh, Dong, Lidický, Mani, Zhao)

Conjecture true for all k.
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Proof for k ≥ 4 using flag algebras

If graphs represent densities as

1 2 3 4
1 2 3 4

= α :=
eundirected(G )(n

k

) 1 2 3 4
1 2 3 4

= β :=
edirected(G )(n

k

)
then

α+ θβ

= 1 2 3 4
1 2 3 4

+ θ 1 2 3 4
1 2 3 4

≤ 1 2 3 4
1 2 3 4

+ θ 1 2 3 4
1 2 3 4

+
r(

a 1 2 3 4 − b 1 2 3 4
1 2 3 4

)2z
≤ 1

for θ = 1 + 1√
2
≥ 1.707 > log2 3 a = 1√

2
, b = k(θ−1)−1√

2
k ≥ 4
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Proof for k = 2 and k = 3

1 1 2
1 2

+ 1.7 1 2
1 2

+
r(

−1 1 2
1 2

− 1 1 2
1 2

+ 0.98 1 2

)2z ≤ 1

1 1 2 3
1 2 3

+1.7 1 2 3
1 2 3

+0.039×
r(

−6 1 2 3
1 2 3

− 5 1 2 3
1 2 3

+ 5 1 2 3

)2z ≤ 1
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Future Directions

Theorem (Balogh, Dong, Lidický, Mani, Zhao)

If T⃗k is forbidden, then 1 2 3 4
1 2 3 4

+
(
1 + 1√

2

)
1 2 3 4
1 2 3 4

≤ 1 for all k.

Question

If T⃗k is forbidden, then 1 2 3 4
1 2 3 4

+
(
1− 1

k

)1−k
1 2 3 4
1 2 3 4

≤ 1 for all k?

n/k (1− 1/k)n

2

1

3

2

1

3

4

2

1

3
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