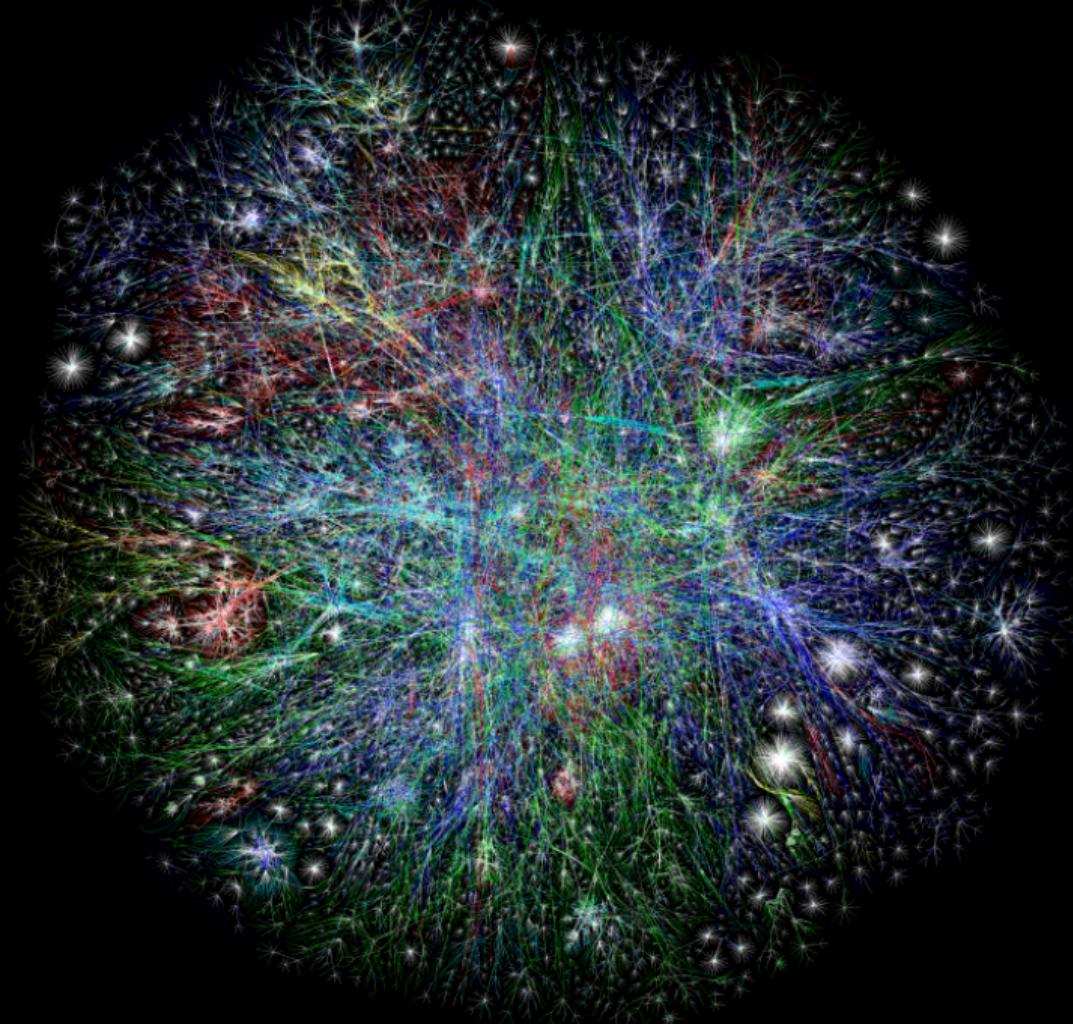
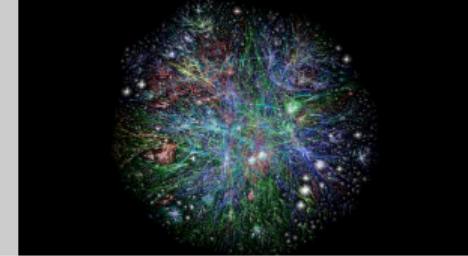


FLAG ALGEBRAS AND ITS APPLICATION

Bernard Lidický

International Conference in Discrete Mathematics
Tiruchirappalli, India
Dec 11, 2025



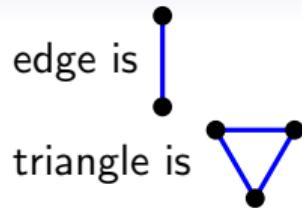


We will only consider large graphs (or networks).

Here is a graph of the internet from a while back to show there are large graphs that are interesting.

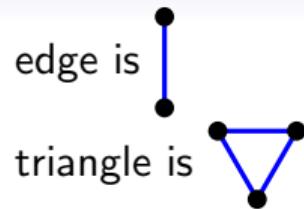
INSPIRATIONAL PROBLEM

- Let n be a fixed number of vertices in a graph G .
- Assume G has m edges.
- What is the number of triangles in G ?



INSPIRATIONAL PROBLEM

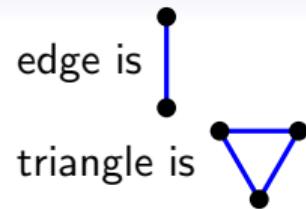
- Let n be a fixed number of vertices in a graph G .
- Assume G has m edges. $\in [0, \binom{n}{2}]$
- What is the number of triangles in G ? $\in [0, \binom{n}{3}]$



INSPIRATIONAL PROBLEM

- Let n be a fixed number of vertices in a graph G .
- Assume G has m edges. $\in [0, \binom{n}{2}]$
- What is the number of triangles in G ? $\in [0, \binom{n}{3}]$

Liu, Pikhurko, Staden 2020 (144 pages)



INSPIRATIONAL PROBLEM

- Let n be a fixed number of vertices in a graph G .
- Assume G has m edges. $\in [0, \binom{n}{2}]$
- What is the number of triangles in G ? $\in [0, \binom{n}{3}]$

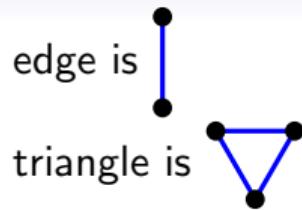
Liu, Pikhurko, Staden 2020 (144 pages)

Consider $n \rightarrow \infty$.

$$\# \text{ Edges} = p \binom{n}{2}$$

$$\# \text{ Triangles} = t \binom{n}{3}$$

Now $p, t \in [0, 1]$.



INSPIRATIONAL PROBLEM

- Let n be a fixed number of vertices in a graph G .
- Assume G has m edges. $\in [0, \binom{n}{2}]$
- What is the number of triangles in G ? $\in [0, \binom{n}{3}]$

Liu, Pikhurko, Staden 2020 (144 pages)

Consider $n \rightarrow \infty$.

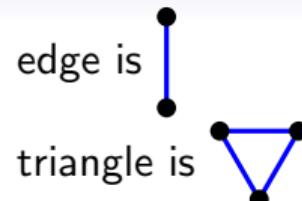
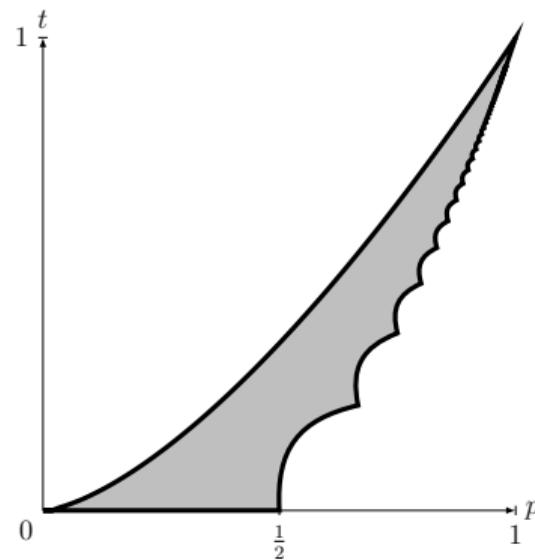
$$\# \text{ Edges} = p \binom{n}{2}$$

$$\# \text{ Triangles} = t \binom{n}{3}$$

Now $p, t \in [0, 1]$.

Upper bound $p^{3/2}$ Kruskal-Katona 1964

Asymptotic lower bound by Razborov 2008



└ Inspirational Problem

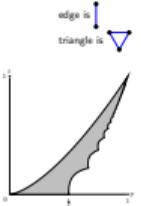
The edge $(0,0)$ to $(1/2,0)$ is Mantel's theorem. The sharp points are Turán graphs. The figure is exaggerated to show the idea if the shape.

INSPIRATIONAL PROBLEM

- Let n be a fixed number of vertices in a graph G .
- Assume G has m edges $\in [0, \binom{n}{2}]$
- What is the number of triangles in G ? $\in [0, \binom{m}{3}]$

Lia, Pilhurko, Staden 2020 (144 pages)
Consider $n \rightarrow \infty$.
Edges $\approx p \binom{n}{2}$
Triangles $\approx t \binom{p}{3}$
Now $p, t \in [0, 1]$.

Upper bound $p^{3/2}$ Kruskal-Katona 1964
Asymptotic lower bound by Razborov 2008



FLAG ALGEBRAS

Seminal paper:

Razborov, Flag Algebras, *Journal of Symbolic Logic* 72 (2007), 1239–1282.

David P. Robbins Prize by AMS for Razborov in 2013 over 300 citations (on Google)

EXAMPLE

If density of edges is p , what is the minimum density of triangles?

- Designed to attack extremal problems.
- Works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs).
- The results are for the limit as graphs get very large.

EXAMPLE EXTREMAL PROBLEM

THEOREM (MANTEL 1907)

Every n -vertex triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

PROBLEM

Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

- local condition and global parameter (computable locally)
- threshold
- bound and extremal example

PROOF OF MANTEL'S THEOREM

THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$.

PROOF.

$$n|E| \geq \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} d_i^2 \geq \frac{(\sum_{i \in V} d_i)^2}{n} = \frac{4|E|^2}{n}$$

□

Cauchy-Schwarz $(\sum_i a_i b_i)^2 \leq \sum_i a_i^2 \cdot \sum_i b_i^2$ with $b_i = 1$.

Cauchy-Schwarz $(\sum_i a_i 1)^2 \leq \sum_i a_i^2 \cdot \sum_i 1^2$.

Flag Algebras and Its Application

└ Flag Algebras

└ Proof of Mantel's Theorem

$|E|$ is number of edges

d_i is a degree of a vertex i . $d_i + d_j \leq n$ because the graph is triangle-free.

We will try to rewrite the proof using densities and this should get us familiar with flag algebras notation.

PROOF OF MANTEL'S THEOREM

THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$.

PROOF.

$$n|E| \geq \sum_{\substack{i \in V \\ j \in V \\ i \neq j}} (d_i + d_j) = \sum_{i \in V} d_i^2 \geq \frac{(\sum_{i \in V} d_i)^2}{n} = \frac{4|E|^2}{n}$$

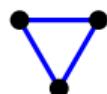
Cauchy-Schwarz $(\sum_{i \in V} a_i b_i)^2 \leq \sum_{i \in V} a_i^2 \cdot \sum_{i \in V} b_i^2$ with $b_i = 1$.

Cauchy-Schwarz $(\sum_{i \in V} a_i 1)^2 \leq \sum_{i \in V} a_i^2 \cdot \sum_{i \in V} 1^2$.

□

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.



The probability that three random vertices in G span a triangle, i.e.
 $\#\triangle / \binom{n}{3}$.

Flag Algebras and Its Application

└ Flag Algebras

└ Flag algebras definitions

The last click the = 1 is for audience participation.

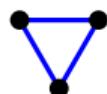
FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

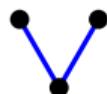
The probability that three random vertices in G span a triangle, i.e.
 $\mathbb{P}(\triangle) = \mathbb{P}(\binom{3}{2})$.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.



The probability that three random vertices in G span a triangle, i.e.
 $\# \triangle / \binom{n}{3}$.



The probability that three random vertices in G span exactly two edges.
 $\# \text{triangle with one edge missing} / \binom{n}{3}$.

Flag Algebras and Its Application

└ Flag Algebras

└ Flag algebras definitions

The last click the = 1 is for audience participation.

FLAG ALGEBRAS DEFINITIONS

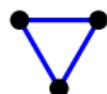
Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.
 $\# \text{Flag} / \binom{n}{3}$.

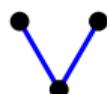
The probability that three random vertices in G span exactly two
edges. $\# \text{Flag} / \binom{n}{3}$.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.



The probability that three random vertices in G span a triangle, i.e.
 $\# \triangle / \binom{n}{3}$.



The probability that three random vertices in G span exactly two edges. $\# \text{V-shape} / \binom{n}{3}$.

The probability that a random vertex other than 1 is adjacent to 1
 $= \deg(1) / (n - 1)$.

Flag Algebras and Its Application

└ Flag Algebras

└ Flag algebras definitions

The last click the = 1 is for audience participation.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

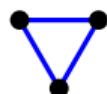
The probability that three random vertices in G span a triangle, i.e.
 $\# \triangle / \binom{n}{3}$.

The probability that three random vertices in G span exactly two
edges. $\# \nabla / \binom{n}{3}$.

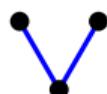
The probability that a random vertex other than \square is adjacent to \square
 $= \text{deg}(\square) / (n - 1)$.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

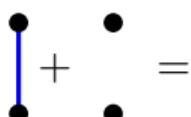


The probability that three random vertices in G span a triangle, i.e.
 $\# \triangle / \binom{n}{3}$.



The probability that three random vertices in G span exactly two edges. $\# \text{triangle} / \binom{n}{3}$.

The probability that a random vertex other than 1 is adjacent to 1
 $= \deg(1) / (n - 1)$.



Flag Algebras and Its Application

└ Flag Algebras

└ Flag algebras definitions

The last click the $= 1$ is for audience participation.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

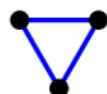
The probability that three random vertices in G span a triangle, i.e.
 $\#\text{ } \triangle / \binom{n}{3}$.

The probability that three random vertices in G span exactly two
edges. $\#\text{ } \text{V} / \binom{n}{3}$.

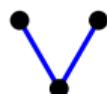
The probability that a random vertex other than \square is adjacent to \square
 $= \text{deg}(\square) / (n - 1)$.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.



The probability that three random vertices in G span a triangle, i.e.
 $\# \triangle / \binom{n}{3}$.



The probability that three random vertices in G span exactly two edges. $\# \text{triangle} / \binom{n}{3}$.

The probability that a random vertex other than 1 is adjacent to 1
 $= \deg(1) / (n - 1)$.

$$\begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \begin{array}{c} \bullet \\ | \\ \bullet \end{array} = 1$$

Flag Algebras and Its Application

└ Flag Algebras

└ Flag algebras definitions

The last click the $= 1$ is for audience participation.

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.
 $\# \text{ } \triangle / \binom{n}{3}$.

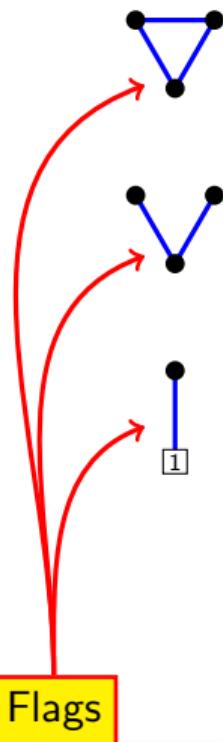
The probability that three random vertices in G span exactly two
edges. $\# \text{ } \text{V} / \binom{n}{3}$.

The probability that a random vertex other than \square is adjacent to \square
 $= \text{deg}(\square) / (n - 1)$.

$$\begin{bmatrix} + & : & : \end{bmatrix} = 1$$

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.



The probability that three random vertices in G span a triangle, i.e.
 $\#\triangle / \binom{n}{3}$.

The probability that three random vertices in G span exactly two edges. $\# \text{path of 3} / \binom{n}{3}$.

The probability that a random vertex other than 1 is adjacent to 1
 $= \deg(1) / (n - 1)$.

$$\begin{array}{c} \bullet \\ \bullet \\ \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \end{array} = 1$$

Flag Algebras and Its Application

└ Flag Algebras

└ Flag algebras definitions

FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.
 $= \frac{|\{ \text{triangle} \}|}{|\{ \text{3 vertices} \}|}$.

The probability that three random vertices in G span exactly two edges. $= \frac{|\{ \text{2 edges} \}|}{|\{ \text{3 vertices} \}|}$.

The probability that a random vertex other than \square is adjacent to \square
 $= \text{deg}(\square)/(n-1)$.

$$\begin{bmatrix} + & : \\ : & : \end{bmatrix} = 1$$

Flags

The last click the $= 1$ is for audience participation.

THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$.

$$n^2|E| \geq n \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq \left(\sum_{i \in V} 1 \cdot d_i\right)^2 = 4|E|^2$$

$$|E| = \binom{n}{2} \approx \frac{n^2}{2}, \quad d_1 = (n-1) \approx \frac{1}{1} \cdot n, \quad 1 = \frac{1}{1}$$

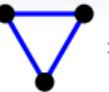
THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$. If = 0 then $\leq \frac{1}{2}$

$$n^2|E| \geq n \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq \left(\sum_{i \in V} 1 \cdot d_i \right)^2 = 4|E|^2$$

$$|E| = \binom{n}{2} \approx \frac{n^2}{2}, \quad d_1 = \frac{n-1}{1} \approx \frac{n}{1} \cdot n, \quad 1 = \boxed{1}$$

THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$. If  = 0 then $\leq \frac{1}{2}$

$$n^2|E| \geq n \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq \left(\sum_{i \in V} 1 \cdot d_i \right)^2 = 4|E|^2$$

$$n^2 \times \left| \frac{n^2}{2} \right| \geq \sum_{\boxed{1} \in V} \boxed{1}^2 \cdot \sum_{\boxed{1} \in V} \left(\frac{\boxed{1}}{\boxed{1}} n \right)^2 \geq \left(\sum_{\boxed{1} \in V} \boxed{1} \cdot \frac{\boxed{1}}{\boxed{1}} n \right)^2 = 4 \left(\frac{n^2}{2} \right)^2$$

$$|E| = \left| \frac{\binom{n}{2}}{2} \right| \approx \left| \frac{\frac{n^2}{2}}{2} \right|, \quad d_1 = \left| \frac{\boxed{1}}{1} (n-1) \right| \approx \left| \frac{\boxed{1}}{\boxed{1}} \cdot n \right|, \quad 1 = \boxed{1}$$

THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$. If = 0 then $\leq \frac{1}{2}$

$$n^2|E| \geq n \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq \left(\sum_{i \in V} 1 \cdot d_i \right)^2 = 4|E|^2$$

$$n^2 \times \left| \frac{n^2}{2} \right| \geq \sum_{\square \in V} \square^2 \cdot \sum_{\square \in V} \left(\frac{n}{\square} \right)^2 \geq \left(\sum_{\square \in V} \square \cdot \frac{n}{\square} \right)^2 = 4 \left(\frac{n^2}{2} \right)^2$$

$$\frac{1}{2} \left| \frac{n^2}{2} \right| \geq \frac{1}{n} \sum_{\square \in V} \square^2 \cdot \frac{1}{n} \sum_{\square \in V} \left(\frac{n}{\square} \right)^2 \geq \left(\frac{1}{n} \sum_{\square \in V} \square \cdot \frac{n}{\square} \right)^2 = \left| \frac{n^2}{2} \right|^2$$

$$|E| = \left| \frac{n^2}{2} \right| \approx \frac{n^2}{2}, \quad d_1 = \frac{n^2}{2} (n-1) \approx \frac{n^2}{2} \cdot n, \quad 1 = \square$$

Flag Algebras and Its Application

└ Flag Algebras

THEOREM (MANTEL 1907)

In every n -vertex triangle-free graph $|E| \leq \frac{1}{4}n^2$. If $\nabla \triangle = 0$ then $\square \leq \frac{1}{2}$

$$n^2|E| \geq n \sum_{\substack{d_i, d_j \\ \leq 2}} (d_i + d_j) = \sum_{i \in V} 1^2 \cdot \sum_{j \in V} d_j^2 \geq (\sum_{i \in V} 1 \cdot d_i)^2 = 4|E|^2$$

$$n^2 \times \frac{n^2}{2} \geq \sum_{\square \in V} \square^2 \cdot \sum_{\square \in V} \left(\frac{\square}{\square} \right)^2 \geq \left(\sum_{\square \in V} \square \cdot \frac{\square}{\square} \right)^2 = 4 \left(\frac{n^2}{2} \right)^2$$

$$\frac{1}{2} \square \geq \frac{1}{n} \sum_{\square \in V} \square^2 \cdot \frac{1}{n} \sum_{\square \in V} \left(\frac{\square}{\square} \right)^2 \geq \left(\frac{1}{n} \sum_{\square \in V} \square \cdot \frac{\square}{\square} \right)^2 = \square^2$$

$$|E| = \binom{n}{2} \approx \frac{n^2}{2}, \quad d_1 = \frac{n}{2}(n-1) \approx \frac{n^2}{2} \cdot n, \quad 1 = \square$$

We are ignoring lower order terms and approximate $\binom{n}{k}$ by $\frac{n^k}{k!}$.

$$n^2|E| \geq n \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq (\sum_{i \in V} 1 \cdot d_i)^2 = 4|E|^2$$

$$\frac{1}{2} \begin{array}{c} \bullet \\ \textcolor{blue}{|} \\ \bullet \end{array} \geq \frac{1}{n} \sum_{\boxed{1} \in V} \boxed{1}^2 \cdot \frac{1}{n} \sum_{\boxed{1} \in V} \left(\begin{array}{c} \bullet \\ \textcolor{blue}{|} \\ \boxed{1} \end{array} \right)^2 \geq \left(\frac{1}{n} \sum_{\boxed{1} \in V} \boxed{1} \cdot \begin{array}{c} \bullet \\ \textcolor{blue}{|} \\ \boxed{1} \end{array} \right)^2 = \begin{array}{c} \bullet \\ \textcolor{blue}{|} \\ \bullet \end{array}^2$$

$$\frac{1}{n} \sum_{\boxed{1} \in V} f = \llbracket f \rrbracket$$

Cauchy-Schwarz: $\llbracket f^2 \rrbracket \cdot \llbracket g^2 \rrbracket \geq \llbracket f \cdot g \rrbracket^2$. In particular, $\llbracket f^2 \rrbracket \geq 0$.

$$n^2|E| \geq n \sum_{ij \in E} \underbrace{(d_i + d_j)}_{\leq n} = \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq (\sum_{i \in V} 1 \cdot d_i)^2 = 4|E|^2$$

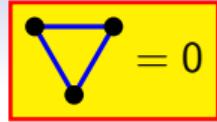
$$\frac{1}{2} \begin{array}{c} \bullet \\ \text{---} \\ \bullet \end{array} \geq \frac{1}{n} \sum_{\boxed{1} \in V} \boxed{1}^2 \cdot \frac{1}{n} \sum_{\boxed{1} \in V} \left(\begin{array}{c} \bullet \\ \boxed{1} \end{array} \right)^2 \geq \left(\frac{1}{n} \sum_{\boxed{1} \in V} \boxed{1} \cdot \begin{array}{c} \bullet \\ \boxed{1} \end{array} \right)^2 = \begin{array}{c} \bullet \\ \text{---} \\ \bullet \end{array}^2$$

$$\frac{1}{2} \begin{array}{c} \bullet \\ \text{---} \\ \bullet \end{array} \geq \llbracket \boxed{1}^2 \rrbracket \cdot \llbracket \begin{array}{c} \bullet \\ \boxed{1} \end{array}^2 \rrbracket \geq \llbracket \boxed{1} \cdot \begin{array}{c} \bullet \\ \boxed{1} \end{array} \rrbracket^2 = \begin{array}{c} \bullet \\ \text{---} \\ \bullet \end{array}^2$$

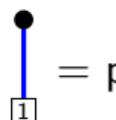
$$\frac{1}{n} \sum_{\boxed{1} \in V} f = \llbracket f \rrbracket$$

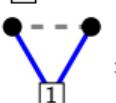
Cauchy-Schwarz: $\llbracket f^2 \rrbracket \cdot \llbracket g^2 \rrbracket \geq \llbracket f \cdot g \rrbracket^2$. In particular, $\llbracket f^2 \rrbracket \geq 0$.

$$\frac{1}{2} \geq \left[\begin{smallmatrix} 1 & 2 \\ 1 & 1 \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right]$$

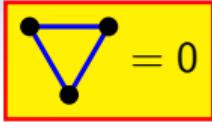


$\boxed{1}$ = not choosing anything = 1

 = probability of choosing a vertex ... $\deg(\boxed{1})/(n-1)$

 = probability of choosing two distinct vertices ... $\binom{\deg(\boxed{1})}{2} / \binom{n-1}{2}$

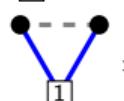
$$\frac{1}{2} \geq \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right]^2 \cdot \left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right]$$



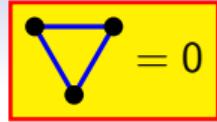
$$\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \times \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] = \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] + o(1) = \left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right] + \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] + o(1)$$

$\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right]$ = not choosing anything = 1

 = probability of choosing a vertex ... $\deg(\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right])/(n-1)$

 = probability of choosing two distinct vertices ... $\binom{\deg(\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right])}{2} / \binom{n-1}{2}$

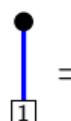
$$\frac{1}{2} \geq \left[\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right]^2 \right] \cdot \left[\left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right] \right] = 1 \cdot \left[\left[\begin{smallmatrix} \bullet & \bullet \\ 1 & 1 \end{smallmatrix} \right] + \left[\begin{smallmatrix} \bullet & \bullet \\ 1 & 1 \end{smallmatrix} \right] \right] = \left[\left[\begin{smallmatrix} \bullet & \bullet \\ 1 & 1 \end{smallmatrix} \right] \right]$$

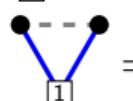


$$= 0$$

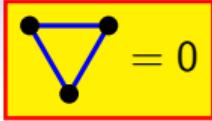
$$\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \times \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] = \left[\begin{smallmatrix} \bullet & \bullet \\ 1 & 1 \end{smallmatrix} \right] + o(1) = \left[\begin{smallmatrix} \bullet & \bullet \\ 1 & 1 \end{smallmatrix} \right] + \left[\begin{smallmatrix} \bullet & \bullet \\ 1 & 1 \end{smallmatrix} \right] + o(1)$$

$\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}$ = not choosing anything = 1

 = probability of choosing a vertex ... $\deg(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix})/(n-1)$

 = probability of choosing two distinct vertices ... $\binom{\deg(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix})}{2} / \binom{n-1}{2}$

$$\frac{1}{2} \geq \left[\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} \bullet & 2 \\ \square & 1 \end{smallmatrix} \right] = 1 \cdot \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} + \begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right] = \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right]$$



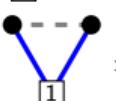
$$= 0$$

$$\left[\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \right] \times \left[\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \right] = \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right] + o(1) = \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right] + \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right] + o(1)$$

$$\left[\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \right] \times \left[\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \right] = \frac{1}{2} \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right] = \frac{1}{2} \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right] + \frac{1}{2} \left[\begin{smallmatrix} \bullet & \bullet \\ \square & 1 \end{smallmatrix} \right]$$

\square = not choosing anything = 1

 = probability of choosing a vertex ... $\deg(\square)/n$

 = probability of choosing two distinct vertices ... $\binom{\deg(\square)}{2} / \binom{n-1}{2}$

Flag Algebras and Its Application

└ Flag Algebras

$$\frac{1}{2} \begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \geq \left[\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \right]^2 \cdot \left[\begin{smallmatrix} \square \\ \square \end{smallmatrix} \right]^2 = 1 \cdot \left[\begin{smallmatrix} \square \\ \square \end{smallmatrix} \right] = \left[\begin{smallmatrix} \square \\ \square \end{smallmatrix} \right]$$

$$\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \times \begin{smallmatrix} \bullet \\ \square \end{smallmatrix} = \begin{smallmatrix} \square \\ \square \end{smallmatrix} + o(1) = \begin{smallmatrix} \bullet \\ \square \end{smallmatrix} + \begin{smallmatrix} \square \\ \bullet \end{smallmatrix} + o(1)$$

$$\begin{smallmatrix} \bullet \\ \square \end{smallmatrix} \times \begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix} = \frac{1}{2} \begin{smallmatrix} \bullet \\ \square \end{smallmatrix} + \frac{1}{2} \begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix} = \frac{1}{2} \begin{smallmatrix} \bullet \\ \square \end{smallmatrix} + \frac{1}{2} \begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}$$

\square = not choosing anything = 1

\bullet = probability of choosing a vertex ... $\text{deg}(\square)/(n-1)$

$\begin{smallmatrix} \bullet \\ \square \end{smallmatrix}$ = probability of choosing two distinct vertices ... $\frac{\text{deg}(\square)}{2} / \binom{n-1}{2}$

Probability of choosing a vertex inducing an edge with the fixed vertex 1.

Probability of choosing a pair of distinct vertices each being in an edge with the fixed vertex 1.

Notice on the left each pair of vertices counted twice!

We will ignore $o(1)$ in the future

$$\frac{1}{2} \geq \left[\begin{array}{c} \bullet \\ \bullet \\ \hline 1 \end{array} \right]$$

$$\sum_{\substack{\bullet \\ \square \in V}} \left[\begin{array}{c} \bullet \\ \bullet \\ \hline \square \end{array} \right] \binom{n-1}{2} = \# \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \end{array} \right]$$

$$\sum_{\substack{\bullet \\ \square \in V}} \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \square \end{array} \right] = \text{probability of choosing three distinct vertices} \dots \# \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \end{array} \right] / \binom{n}{3}$$

$$\frac{1}{2} \geq \left[\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] \right]$$

$$\left[\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] \right] = \frac{1}{n} \sum_{\square \in V} \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] = \frac{1}{3} \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right]$$

$$\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] = \text{probability of choosing two distinct vertices} \dots \binom{\deg(\square)}{2} / \binom{n-1}{2}$$

$$\sum_{\square \in V} \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] \binom{n-1}{2} = \# \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right]$$

$$\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] = \text{probability of choosing three distinct vertices} \dots \# \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] / \binom{n}{3}$$

$$\frac{1}{2} \geq \left[\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] \right] = \frac{1}{3}$$

$$\left[\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] \right] = \frac{1}{n} \sum_{\square \in V} \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] = \frac{1}{3}$$

$$\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] = \text{probability of choosing two distinct vertices} \dots \binom{\deg(\square)}{2} / \binom{n-1}{2}$$

$$\sum_{\square \in V} \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] \binom{n-1}{2} = \# \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right]$$

$$\left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] = \text{probability of choosing three distinct vertices} \dots \# \left[\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right] / \binom{n}{3}$$

$$\frac{1}{2} \geq \left[\begin{array}{c} \bullet \\ \bullet \\ \hline 1 \end{array} \right] = \frac{1}{3}$$

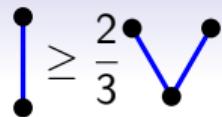
$$\geq \frac{2}{3}$$

$$\left[\begin{array}{c} \bullet \\ \bullet \\ \hline 1 \end{array} \right] = \frac{1}{n} \sum_{1 \in V} \left[\begin{array}{c} \bullet \\ \bullet \\ \hline 1 \end{array} \right] = \frac{1}{3}$$

$$\left[\begin{array}{c} \bullet \\ \bullet \\ \hline 1 \end{array} \right] = \text{probability of choosing two distinct vertices} \dots \binom{\deg(1)}{2} / \binom{n-1}{2}$$

$$\sum_{1 \in V} \left[\begin{array}{c} \bullet \\ \bullet \\ \hline 1 \end{array} \right] \binom{n-1}{2} = \# \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right]$$

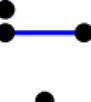
$$\left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right] = \text{probability of choosing three distinct vertices} \dots \# \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right] / \binom{n}{3}$$

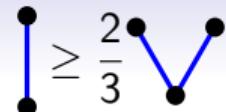


$$|E| = \frac{1}{n} \left(\sum_{\bullet \bullet} 1 + \sum_{\bullet \vee \bullet} 2 + \sum_{\bullet \triangle \bullet} 3 \right)$$

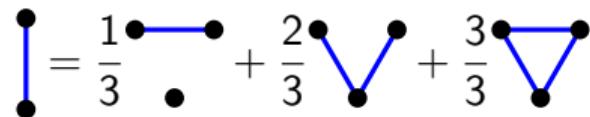
$$\binom{n}{2} \approx \frac{1}{n} \bullet \bullet \binom{n}{3} + \frac{2}{n} \bullet \vee \bullet \binom{n}{3} + \frac{3}{n} \bullet \triangle \bullet \binom{n}{3}$$

 = probability of choosing an edge ... $|E|/\binom{n}{2}$

 = probability of choosing an triple ... $\# \bullet \vee \bullet / \binom{n}{3}$



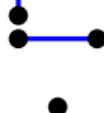
$$\geq \frac{2}{3}$$



$$|E| = \frac{1}{n} \left(\sum_{\substack{\bullet \\ \vdots \\ \bullet}} 1 + \sum_{\substack{\bullet \\ \vee \\ \bullet}} 2 + \sum_{\substack{\bullet \\ \triangle \\ \bullet}} 3 \right)$$

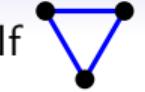
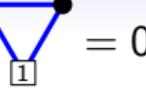
$$\binom{n}{2} \approx \frac{1}{n} \bullet \overline{\bullet} \binom{n}{3} + \frac{2}{n} \bullet \overline{\bullet} \binom{n}{3} + \frac{3}{n} \bullet \overline{\bullet} \binom{n}{3}$$

\bullet = probability of choosing an edge ... $|E|/\binom{n}{2}$



\bullet = probability of choosing an triple ... $\# \bullet \overline{\bullet} / \binom{n}{3}$

PROOF RECAP

If  =  = 0 then $\leq 1/2$.

$$n^2|E| \geq \sum_{i \in V} 1^2 \cdot \sum_{i \in V} d_i^2 \geq \left(\sum_{i \in V} 1 \cdot d_i\right)^2 = 4|E|^2$$

$$\frac{1}{2} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \geq \frac{1}{3} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}^2 \geq \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^2$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{3} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \frac{2}{3} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \frac{3}{3} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{n} \sum_{\substack{1 \\ \square \in V}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{3} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \begin{bmatrix} f^2 \\ g^2 \end{bmatrix} \cdot \begin{bmatrix} f^2 \\ g^2 \end{bmatrix} \geq \begin{bmatrix} f \\ g \end{bmatrix}^2$$

DIFFERENT PROOF OF $\triangle = 0$ IMPLIES $\square \leq 1/2$

$$\square = \frac{1}{3} \cdot \cdot \cdot + \frac{2}{3} \cdot \cdot \cdot + \frac{3}{3} \cdot \cdot \cdot$$

DIFFERENT PROOF OF $\triangle = 0$ IMPLIES $\square \leq 1/2$

$$\begin{aligned}\square &= \frac{1}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \backslash \\ \bullet \end{array} + \frac{3}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \backslash \\ \bullet \end{array} \\ &\leq \frac{1}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \backslash \\ \bullet \end{array} + \frac{1}{2} \left[\left(\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right)^2 \right]\end{aligned}$$

DIFFERENT PROOF OF $\triangle = 0$ IMPLIES $\square \leq 1/2$

$$\begin{aligned}
 \square &= \frac{1}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \end{array} + \frac{3}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \\ \diagdown \\ \bullet \end{array} \\
 &\leq \frac{1}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \end{array} + \frac{1}{2} \left[\left(\begin{array}{c} \bullet \\ \square \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right)^2 \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \end{array} + \frac{1}{2} \left[\begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \\ \diagdown \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \\ \diagdown \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \square \\ \bullet \\ \diagup \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \right]
 \end{aligned}$$

DIFFERENT PROOF OF $\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} = 0$ IMPLIES $\begin{array}{c} \bullet \\ \bullet \end{array} \leq 1/2$

$$\begin{aligned}
 \begin{array}{c} \bullet \\ \bullet \end{array} &= \frac{1}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{3}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} \\
 &\leq \frac{1}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{1}{2} \left[\left(\begin{array}{c} \bullet \\ \boxed{1} \end{array} - \begin{array}{c} \bullet \\ \boxed{1} \end{array} \right)^2 \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{1}{2} \left[\begin{array}{c} \bullet & \bullet \\ \boxed{1} & \bullet \end{array} + \begin{array}{c} \bullet & \bullet \\ \bullet & \boxed{1} \end{array} - \begin{array}{c} \bullet \\ \boxed{1} \end{array} - \begin{array}{c} \bullet \\ \boxed{1} \end{array} + \begin{array}{c} \bullet \\ \boxed{1} \end{array} + \begin{array}{c} \bullet \\ \boxed{1} \end{array} \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{1}{2} \left(\frac{1}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} - \frac{2}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} - \frac{2}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} + \frac{1}{3} \begin{array}{c} \bullet & \bullet \\ & \bullet \end{array} \right)
 \end{aligned}$$

DIFFERENT PROOF OF $\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} = 0$ IMPLIES $\begin{array}{c} \bullet \\ | \\ \bullet \end{array} \leq 1/2$

$$\begin{aligned}
 \begin{array}{c} \bullet \\ | \\ \bullet \end{array} &= \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ | \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{3}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \\
 &\leq \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ | \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{1}{2} \left[\left(\begin{array}{c} \bullet \\ | \\ \bullet \end{array} - \begin{array}{c} \bullet \\ | \\ \square \end{array} \right)^2 \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ | \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{1}{2} \left[\begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \bullet \\ | \end{array} - \begin{array}{c} \bullet \\ | \\ \bullet \end{array} - \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \begin{array}{c} \bullet \\ | \\ \bullet \end{array} \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ | \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{1}{2} \left(\frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ | \end{array} - \frac{2}{3} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} - \frac{2}{3} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ | \end{array} \right) \\
 &= \frac{1}{2} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{1}{6} \begin{array}{c} \bullet \\ | \\ \bullet \end{array} + \frac{1}{2} \begin{array}{c} \bullet \\ | \\ \bullet \end{array}
 \end{aligned}$$

DIFFERENT PROOF OF $\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} = 0$ IMPLIES $\begin{array}{c} \bullet \\ \bullet \end{array} \leq 1/2$

$$\begin{aligned}
 \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} &= \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{3}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \\
 &\leq \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{1}{2} \left[\left(\begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} - \begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} \right)^2 \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{1}{2} \left[\begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} - \begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} - \begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \boxed{1} \end{array} \right] \\
 &= \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{2}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{1}{2} \left(\frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} - \frac{2}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} - \frac{2}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{1}{3} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) \\
 &= \frac{1}{2} \begin{array}{c} \bullet \\ \bullet \end{array} + \frac{1}{6} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \frac{1}{2} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \\
 &\leq \frac{1}{2} \underbrace{\left(\begin{array}{c} \bullet \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right)}_{=1} = \frac{1}{2}
 \end{aligned}$$

AUTOMATED APPROACH

$$\begin{aligned} \bullet \bullet &\leq \bullet \bullet + \left\| \left(\begin{array}{c} \bullet \\ \square \\ \end{array} - \begin{array}{c} \bullet \\ \square \\ \end{array} \right)^2 \right\| = \frac{1}{2} \bullet \bullet + \frac{1}{6} \bullet \bullet + \frac{1}{2} \bullet \bullet \\ &\leq \frac{1}{2} \left(\bullet \bullet + \bullet \bullet + \bullet \bullet \right) = \frac{1}{2} \end{aligned}$$

In general as sum of squares

$$f \leq f + \sum_h \left\| h \right\|^2 = \sum_{G \in \mathcal{F}_n} c_G \cdot G \leq \max_{G \in \mathcal{F}_n} c_G$$

f, g linear combination of flags

$\mathcal{F}_n \dots$ flags on n vertices

SOS proofs can be optimized by semidefinite programming

SUM OF SQUARES

$$\left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\| \leq \left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right\| + \left\| \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} - \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right)^2 \right\| = \frac{1}{2} \bullet \bullet + \frac{1}{6} \bullet \bullet + \frac{1}{2} \bullet \bullet \leq \frac{1}{2}$$

In general as sum of squares

$$f \leq f + \sum_h \left\| h^2 \right\| = \sum_{G \in \mathcal{F}_n} c_G \cdot G \leq \max_{G \in \mathcal{F}_n} c_G$$

Semidefinite matrix

$$\left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\| \leq \left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right\| + \left\| \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array}, \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right) \underbrace{\left(\begin{array}{cc} a & c \\ c & b \end{array} \right)}_{=M \succeq 0} \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array}, \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline 1 \end{array} \right)^T \right\| = \sum_{G \in \mathcal{F}_n} c_{G,M} \cdot G \leq \max_{G \in \mathcal{F}_n} c_{G,M}$$

SUM OF SQUARES

$$\left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\| \leq \left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\| + \left\| \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right)^2 \right\| = \frac{1}{2} \bullet \bullet + \frac{1}{6} \bullet \bullet + \frac{1}{2} \bullet \bullet \leq \frac{1}{2}$$

In general as sum of squares

$$f \leq f + \sum_h \left\| h^2 \right\| = \sum_{G \in \mathcal{F}_n} c_G \cdot G \leq \max_{G \in \mathcal{F}_n} c_G$$

Semidefinite matrix

$$\left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\| \leq \left\| \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\| + \left\| \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}, \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) \underbrace{\left(\begin{array}{cc} a & c \\ c & b \end{array} \right)}_{=M \succeq 0} \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}, \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right)^T \right\| = \sum_{G \in \mathcal{F}_n} c_{G,M} \cdot G \leq \min_{M \succeq 0} \max_{G \in \mathcal{F}_n} c_{G,M}$$

Flag Algebras and Its Application

- Flag Algebras

- Sum of squares

Make the subscript of Max under

SUM OF SQUARES

$$\begin{array}{c} \text{I} \leq \text{I} + \left[\left(\begin{array}{c} \text{I} \\ \text{I} \\ \hline \text{I} & \text{I} \end{array} - \begin{array}{c} \text{I} \\ \text{I} \\ \hline \text{I} & \text{I} \end{array} \right)^2 \right] = \frac{1}{2} \begin{array}{c} \text{I} \\ \text{I} \\ \hline \text{I} & \text{I} \end{array} + \frac{1}{6} \begin{array}{c} \text{I} \\ \text{I} \\ \text{I} \\ \hline \text{I} & \text{I} & \text{I} \end{array} + \frac{1}{2} \begin{array}{c} \text{V} \\ \text{V} \\ \hline \text{V} & \text{V} \end{array} \leq \frac{1}{2} \end{array}$$

In general as sum of squares

$$f \leq f + \sum_h \|h^2\| = \sum_{G \in \mathcal{F}_n} c_G \cdot G \leq \max_{G \in \mathcal{F}_n} c_G$$

Semidefinite matrix

$$\begin{array}{c} \text{I} \leq \text{I} + \left[\left(\begin{array}{c} \text{I} \\ \text{I} \\ \hline \text{I} & \text{I} \end{array} - \begin{array}{c} a & c \\ c & b \\ \hline \text{I} & \text{I} \end{array} \right) \left(\begin{array}{c} a & c \\ c & b \\ \hline \text{I} & \text{I} \end{array} \right)^T \right] = \sum_{G \in \mathcal{F}_n} c_{G,M} \cdot G \leq \min_{M \geq 0} \max_{G \in \mathcal{F}_n} c_{G,M} \end{array}$$

Rainbow Triangles

<https://arxiv.org/abs/2511.21061>

JOINTS

Joint in \mathbb{R}^d is a point where d lines that span \mathbb{R}^d intersect.

What is the maximum number of joints for N lines?

THEOREM (CHAO AND HANS YU 2023+)

Number of joints is maximized by k hyperplanes whose intersection give $N = \binom{k}{d-1}$ lines and $\binom{k}{d}$ joints.

Assymptotically by Hans Yu and Zhao 2023.

JOINTS

Joint in \mathbb{R}^d is a point where d lines that span \mathbb{R}^d intersect.

What is the maximum number of joints for N lines?

THEOREM (CHAO AND HANS YU 2023+)

Number of joints is maximized by k hyperplanes whose intersection give $N = \binom{k}{d-1}$ lines and $\binom{k}{d}$ joints.

Assymptotically by Hans Yu and Zhao 2023.

Multijoint problem: In \mathbb{R}^3 , lines of three colors, maximize rainbow joints.

hyperplane \rightarrow vertex

intersection of hyperplanes \rightarrow edge

joint \rightarrow rainbow triangle

THEOREM (CHAO AND HANS YU 2024+)

In 3-edge colored graph $\left(\# \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \bullet \quad \bullet \end{array} \right)^2 \leq 2 \left(\# \begin{array}{c} \bullet \\ \mid \\ \bullet \end{array} \right) \cdot \left(\# \begin{array}{c} \bullet \\ \mid \\ \bullet \end{array} \right) \cdot \left(\# \begin{array}{c} \bullet \\ \mid \\ \bullet \end{array} \right)$.

JOINTS

Multijoint problem: In \mathbb{R}^3 , lines of three colors, maximize rainbow joints.

hyperplane \rightarrow vertex

intersection of hyperplanes \rightarrow edge

joint \rightarrow rainbow triangle

THEOREM (CHAO AND HANS YU 2024+)

$$\text{In 3-edge colored graph } \left(\# \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \bullet \quad \bullet \end{array} \right)^2 \leq 2 \left(\# \begin{array}{c} \bullet \\ | \\ \bullet \end{array} \right) \cdot \left(\# \begin{array}{c} \bullet \\ | \\ \bullet \end{array} \right) \cdot \left(\# \begin{array}{c} \bullet \\ | \\ \bullet \end{array} \right).$$

In flag algebras

$$\left(\# \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \bullet \quad \bullet \end{array} \right)^2 \leq 9 \begin{array}{c} \bullet \\ | \\ \bullet \end{array} \cdot \begin{array}{c} \bullet \\ | \\ \bullet \end{array} \cdot \begin{array}{c} \bullet \\ | \\ \bullet \end{array}$$

Automated sum-of-squares proof needs 540GB RAM

Flag Algebras and Its Application

└ Flag Algebras

└ Joints

Motivation is for joins - one take lined colored reg, green and blue and asks for rainbow lines.
Their proof uses entropy method.

1,601,952 configurations and 540GB ram

JOINTS

Multijoint problem: In \mathbb{R}^3 , lines of three colors, maximize rainbow joints.
hyperplane \rightarrow vertex
intersection of hyperplanes \rightarrow edge
joint \rightarrow rainbow triangle

THEOREM (CHAO AND HANS YU 2024+)

In 3-edge colored graph $(\# \text{ } \textcolor{blue}{V})^2 \leq 2 \left(\# \text{ } \textcolor{blue}{I} \right) \cdot \left(\# \text{ } \textcolor{blue}{E} \right) \cdot \left(\# \text{ } \textcolor{blue}{J} \right)$.

In flag algebras

$$(\textcolor{blue}{V})^2 \leq 9 \text{ } \textcolor{blue}{I} \text{ } \textcolor{blue}{E} \text{ } \textcolor{blue}{J}$$

Automated sum-of-squares proof needs 540GB RAM

$$\begin{array}{c} \text{[Diagram: Two vertical lines with dots at the top and bottom, representing a 2x2 matrix.]} \\ \times \end{array} \geq \frac{1}{3} \cdot \left(\begin{array}{c} \text{[Diagram: A 2x2 matrix with green dashed lines and blue solid lines.]} \\ + \end{array} \begin{array}{c} \text{[Diagram: A 2x2 matrix with green dashed lines and red solid lines.]} \\ + \end{array} \begin{array}{c} \text{[Diagram: A 2x2 matrix with green dashed lines and blue solid lines.]} \\ + \end{array} \right) = 4 \cdot \left[\begin{array}{c} \text{[Diagram: A 2x2 matrix with red solid lines and a red bracket below it labeled '1'.]} \\ \text{[Diagram: A 2x2 matrix with green dashed lines and a green bracket above it labeled '2'.]} \end{array} \right]^2.$$

$$\begin{array}{c} \text{Diagram: Two vertical columns of two nodes each, connected by a dashed green line between the top nodes and a solid blue line between the bottom nodes.} \\ \times \geq \frac{1}{3} \cdot \left(\text{Diagram 1} + \text{Diagram 2} + \text{Diagram 3} + \text{Diagram 4} \right) = 4 \cdot \left[\left[\text{Diagram 1} \right]^2 \right]. \end{array}$$

$$\begin{aligned} & \text{Diagram 1} = 6 \cdot \left[\left[\text{Diagram 1} \right] \right] = 6 \cdot \left[\left[\text{Diagram 1} \right] \times \left[\left[\text{Diagram 1} \right] \right] \right] \\ & \leq 6 \cdot \sqrt{\left[\left[\left(\text{Diagram 1} \right)^2 \right] \right]} \cdot \sqrt{\left[\left[\left(\text{Diagram 1} \right)^2 \right] \right]} \\ & = 6 \cdot \sqrt{\frac{1}{12} \left(\text{Diagram 1} + \text{Diagram 2} + \text{Diagram 3} + \text{Diagram 4} \right)} \cdot \sqrt{\text{Diagram 1}} \\ & \leq 3 \cdot \sqrt{\text{Diagram 1}} \cdot \sqrt{\text{Diagram 1}} = 3 \cdot \sqrt{\text{Diagram 1}} \times \sqrt{\text{Diagram 1}}. \end{aligned}$$

Flag Algebras and Its Application

└ Flag Algebras

└ Balogh, Bradshaw, Garcia, L. 2025+

$$\begin{aligned} \text{I} &\geq \frac{1}{3} \cdot (\text{II} + \text{III} + \text{IV} + \text{V}) = 4 \cdot [\text{V}^{\text{II}}]. \\ \text{V} &= 6 \cdot [\text{V}^{\text{II}}] = 6 \cdot [\text{V}^{\text{II}} \times \text{I}] \\ &\leq 6 \cdot \sqrt{([\text{V}^{\text{II}}]^2)} \cdot \sqrt{([\text{I}]^2)} \\ &= 6 \cdot \sqrt{\frac{1}{12} (\text{II} + \text{III} + \text{IV} + \text{V})} \cdot \sqrt{1} \\ &\leq 3 \cdot \sqrt{\text{I}} \times \sqrt{\text{I}} = 3 \cdot \sqrt{\text{I}} \times \sqrt{\text{I}} \end{aligned}$$

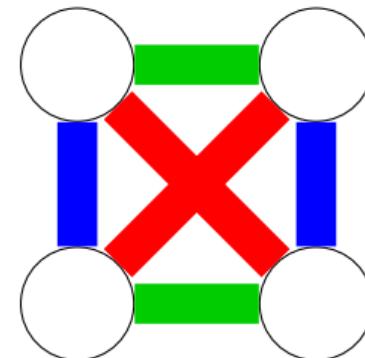
Can be written without flags, a simple counting proof.

THEOREM (CHAO AND HANS YU 2024+)

$$\text{Diagram: A V-shaped structure with two red wavy lines and a blue vertical line. To its right is a 3x3 grid of points with vertical and horizontal dashed lines connecting them.}$$
$$\leq 3\sqrt{\dots}$$

THEOREM (BALOGH, BRADSHAW, GARCIA, L.
2025+)

$$\text{Diagram: A 2x2 grid of points with red and green wavy lines forming an X. To its right is a 2x2 grid of circles with a red X and blue vertical lines.}$$
$$\leq \frac{3}{2} \cdot \left(\dots \times \dots \times \dots \right)^{2/3}$$



We also have exactness and translation to counting and a short entropy proofs.

Flag Algebras and Its Application

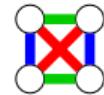
└ Flag Algebras

THEOREM (CHAO AND HANS YU 2024+)

$$\text{V} \leq 3\sqrt{1+1}$$

THEOREM (BALOGH, BRADSHAW, GARCIA, L. 2025+)

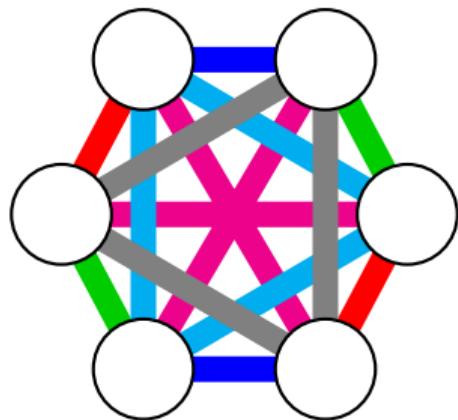
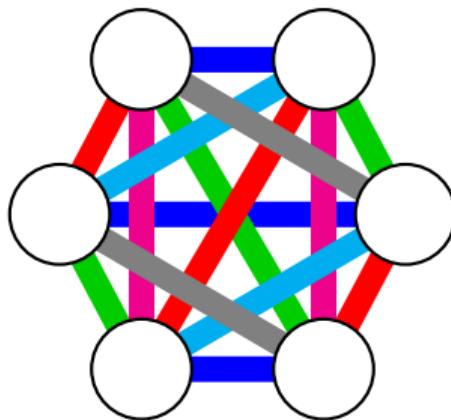
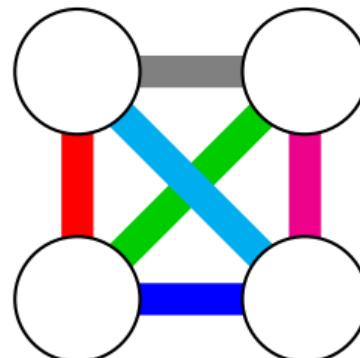
$$\text{X} \leq \frac{13}{n^2} \left(\text{V} \times \text{V} \times \text{V} \right)^{2/3}$$



We also have exactness and translation to counting and a short entropy proofs.

We also have exactness results.

FURTHER DIRECTIONS



QUESTION

Let G be a graph with edges colored by colors $\{1, \dots, 6\}$. Denote by C_i the number of edges colored by color i . Let H be the number of rainbow copies of K_4 in G . Is it true that $H \leq \sqrt[3]{\prod_i C_i}$?

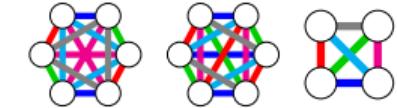
Flag Algebras and Its Application

└ Flag Algebras

└ Further Directions

We note how to do it for a fixed rainbow coloring

FURTHER DIRECTIONS



QUESTION

Let G be a graph with edges colored by colors $\{1, \dots, 6\}$. Denote by C_i the number of edges colored by color i . Let H be the number of rainbow copies of K_4 in G . Is it true that $H \leq \sqrt[6]{\prod_i C_i}^7$?

Mathematical Biology

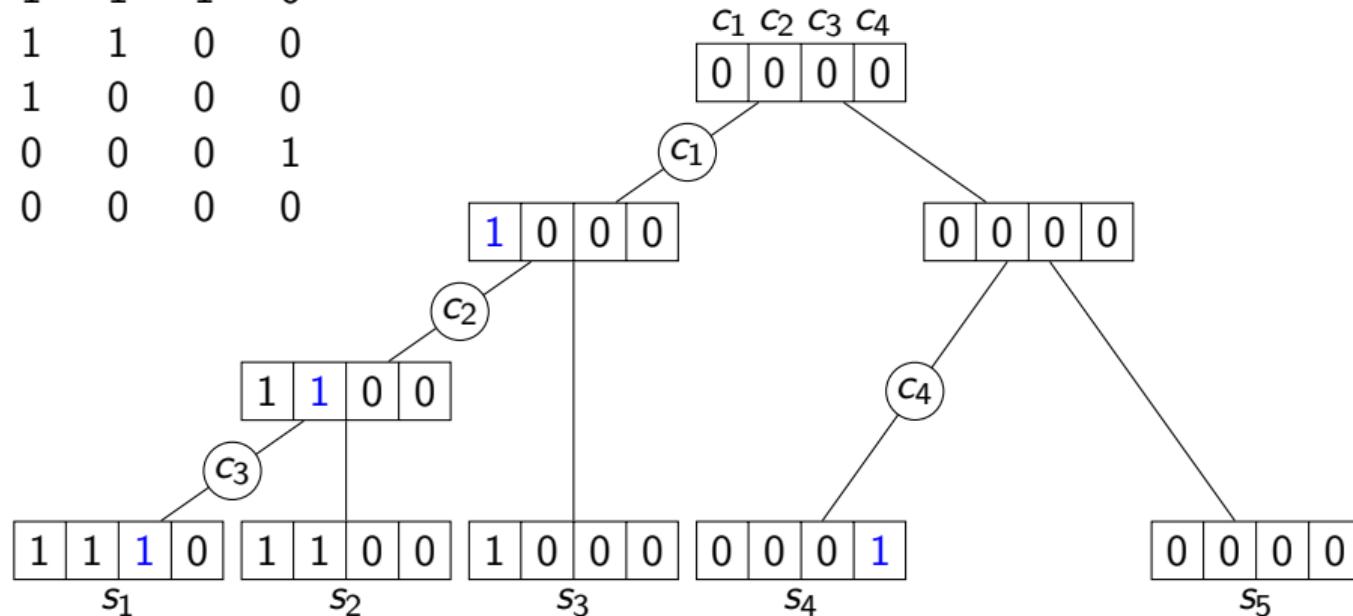
PHYLOGENY

How do we reconstruct an evolutionary history (*phylogeny*) from observations of living species from characters?

	Spine	Fur	Fins	Wings
Seal	1	1	1	0
Dog	1	1	0	0
Lizard	1	0	0	0
Butterfly	0	0	0	1
Worm	0	0	0	0

PHYLOGENY

	c_1	c_2	c_3	c_4
s_1	1	1	1	0
s_2	1	1	0	0
s_3	1	0	0	0
s_4	0	0	0	1
s_5	0	0	0	0



ASSUMPTIONS AND PROBLEMS

Perfect phylogeny model is fundamental, but inaccurate

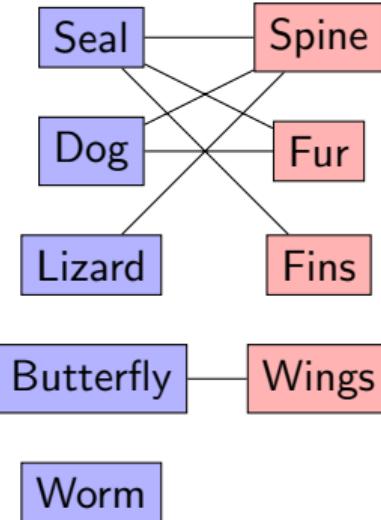
LEMMA (THREE-GAMETE CONDITION, HUDSON-KAPLAN '85)

A set of species and characters has a perfect phylogeny if and only if for every pair of traits, no three species present all of the combinations 10, 01, 11.

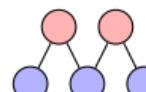
	Spine	Fins		Spine	Wings
Seal	1	1	Bird	1	1
Lizard	1	0	Lizard	1	0
Butterfly	0	0	Butterfly	0	1

INCIDENCE GRAPH

	Spine	Fur	Fins	Wings
Seal	1	1	1	0
Dog	1	1	0	0
Lizard	1	0	0	0
Butterfly	0	0	0	1
Worm	0	0	0	0



CLAIM

The incidence graph contains no induced copies of  if and only if the three-gamete condition is satisfied

MAIN PROBLEM

PROBLEM

How many induced copies of $M =$ can we possibly have?

Counting M measures how far from perfect.

- Inducibility problem in *red-blue graphs*
- Bipartite graphs with fixed two-colorings
- Isomorphisms are graph isomorphisms and preserve colors

RESULTS

THEOREM (EULENSTEIN, HALFPAP, L., MIYASAKI, PFENDER, VOLEC 2025+)

Fix $\alpha > 0$. Let $G_{r,b}$ be a red-blue graph with r red vertices and b blue vertices with $\frac{r}{b} = \alpha$. Then

$$\# \begin{array}{c} \text{red} \\ \text{blue} \\ \text{blue} \\ \text{blue} \end{array} \leq \frac{r^2 b^3}{81} + o(r^2 b^3)$$

COROLLARY (EHLMPV)

If G_n is a red-blue graph on n vertices then

$$\# \begin{array}{c} \text{red} \\ \text{blue} \\ \text{blue} \\ \text{blue} \end{array} \leq \frac{2^2 3^4 n^5}{15^5} + o(n^5).$$

ASYMPTOTIC EXTREMAL EXAMPLES

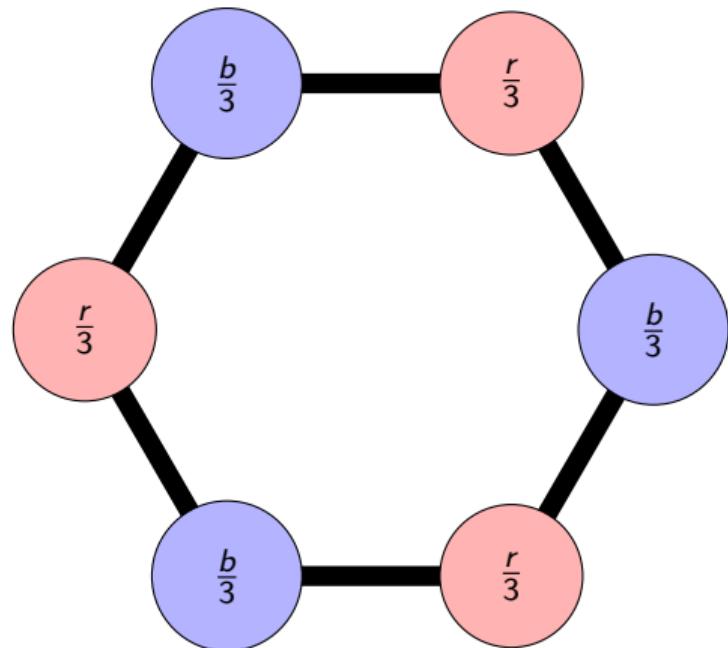


FIGURE: $C_6(r, b)$

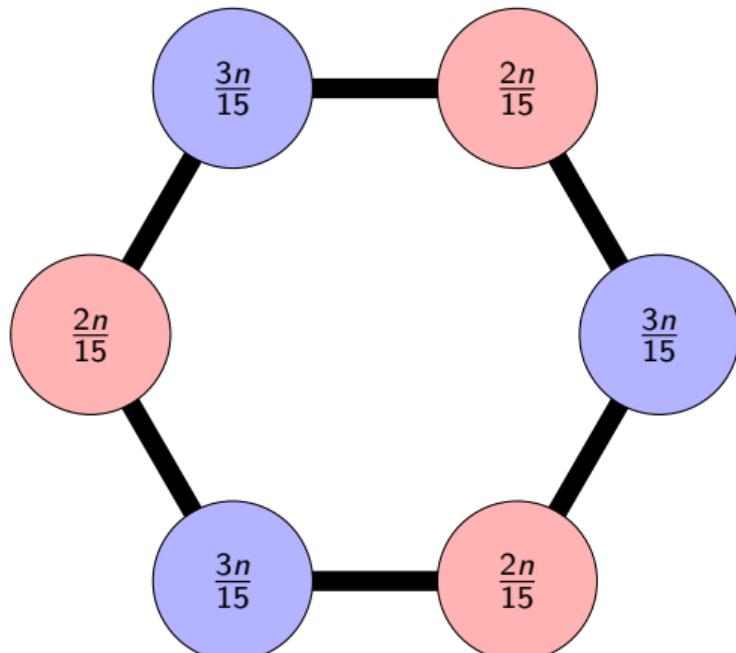
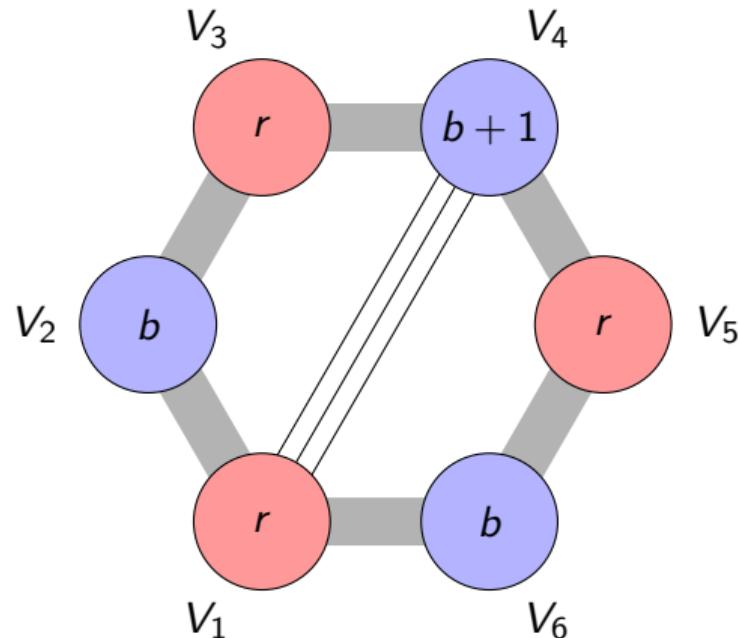


FIGURE: $C_6(n)$

FUTURE DIRECTIONS

- Determine lower-order terms and stronger characterizations



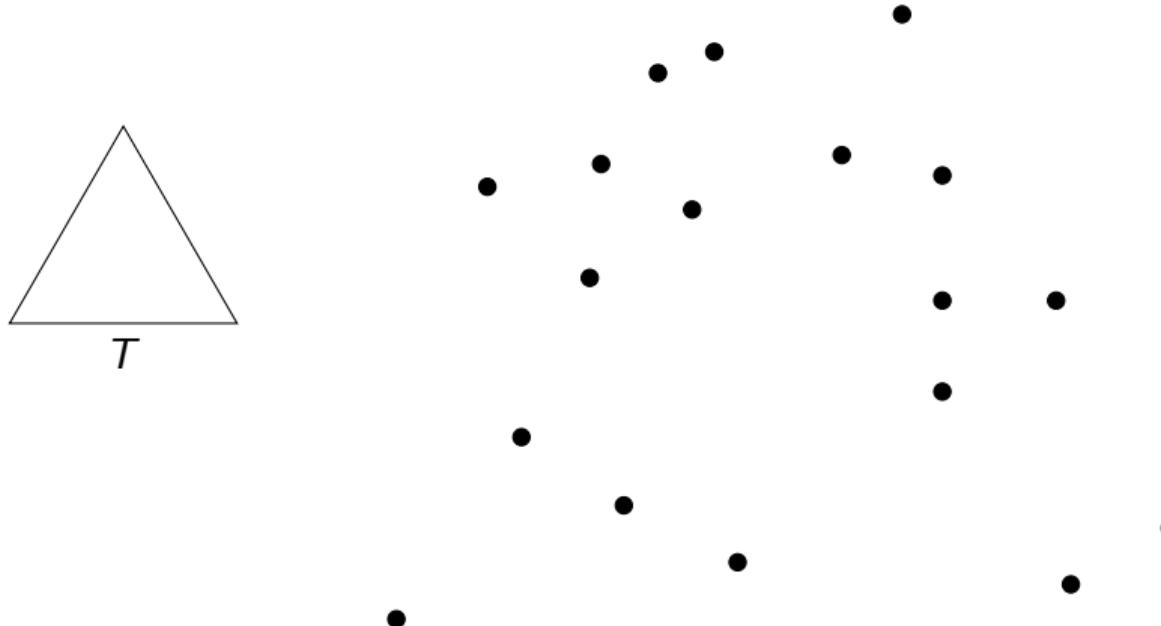
ε -similar Triangles

<https://arxiv.org/abs/2101.10304>

PROBLEM

Let T be a triangle and $n \in \mathbb{N}$ fixed.

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?

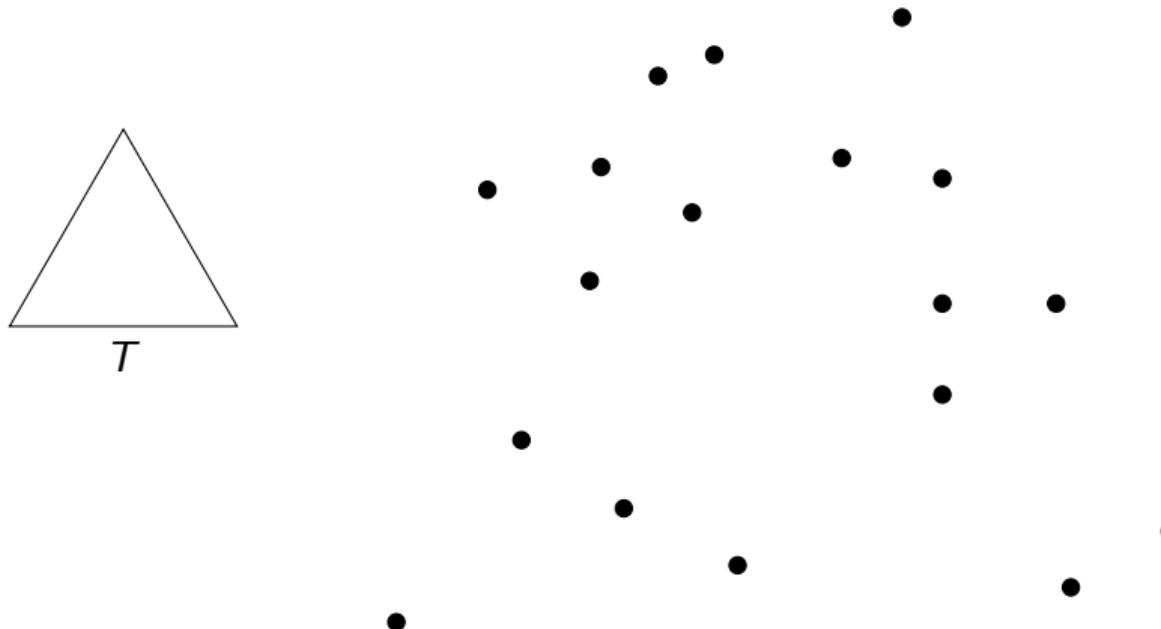


T_1 and T_2 are *ε -similar* if their inner angles differ by at most ε .
(OK to move, scale, rotate, ε -perturb)

PROBLEM

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon > 0$ fixed)

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?

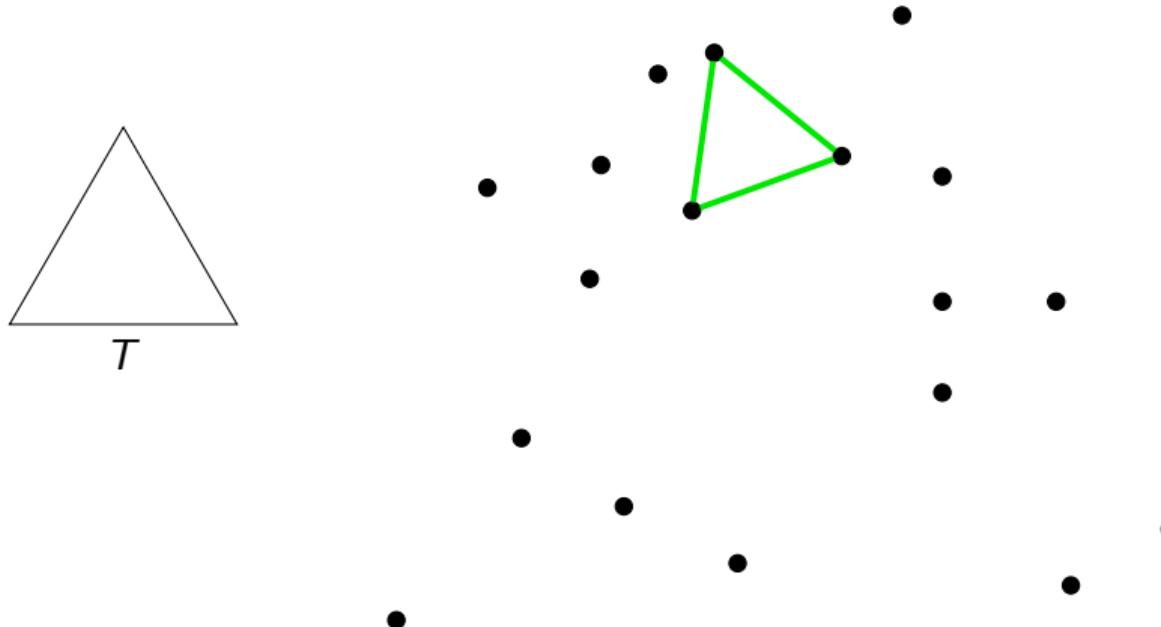


T_1 and T_2 are ε -similar if their inner angles differ by at most ε .
(OK to move, scale, rotate, ε -perturb)

PROBLEM

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon > 0$ fixed)

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?

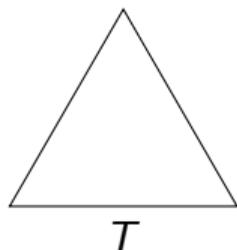
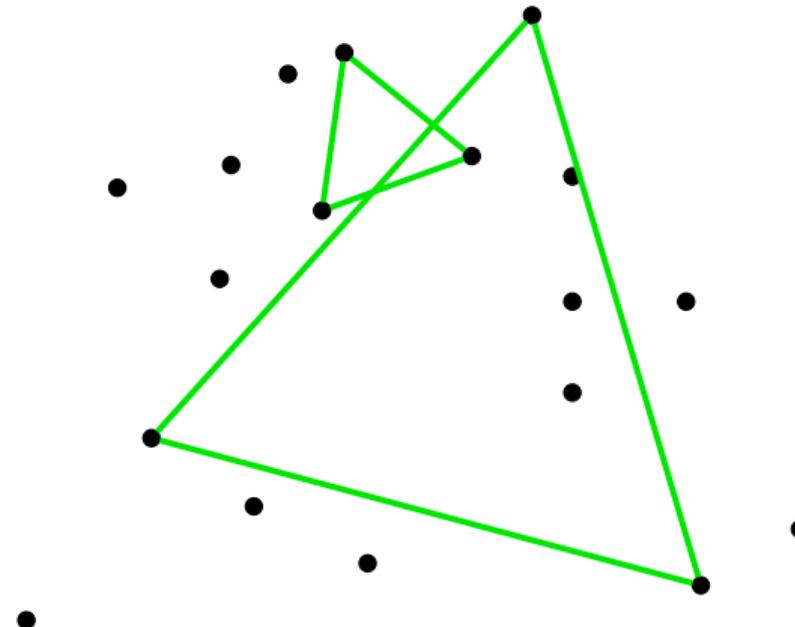


T_1 and T_2 are *ε -similar* if their inner angles differ by at most ε .
(OK to move, scale, rotate, ε -perturb)

PROBLEM

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon > 0$ fixed)

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?

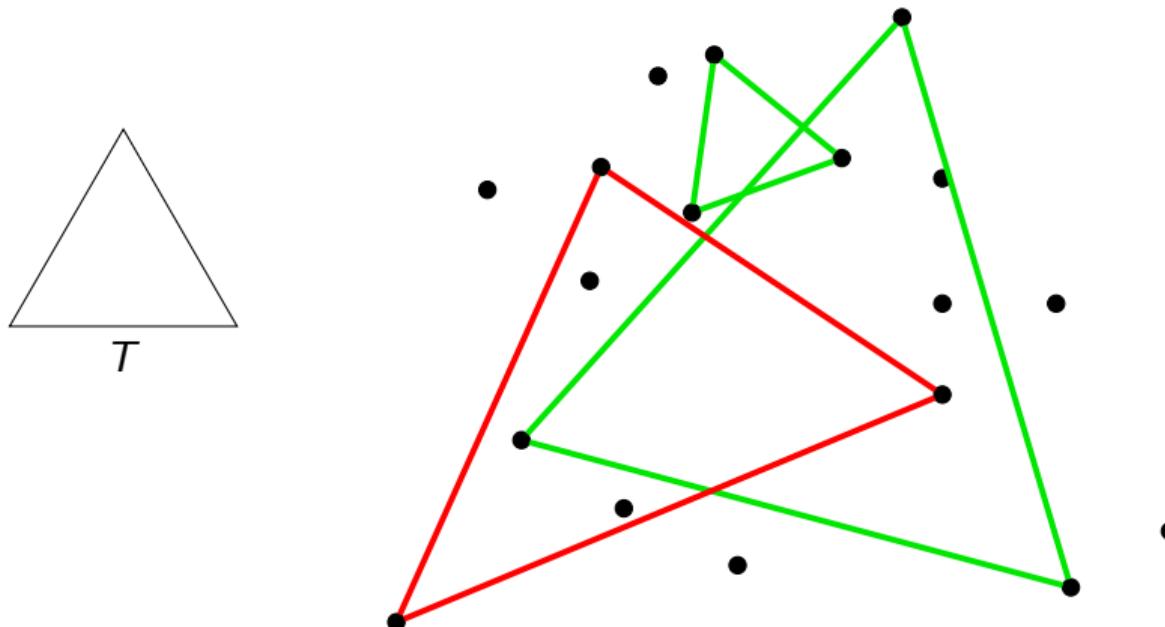


T_1 and T_2 are *ε -similar* if their inner angles differ by at most ε .
(OK to move, scale, rotate, ε -perturb)

PROBLEM

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon > 0$ fixed)

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?

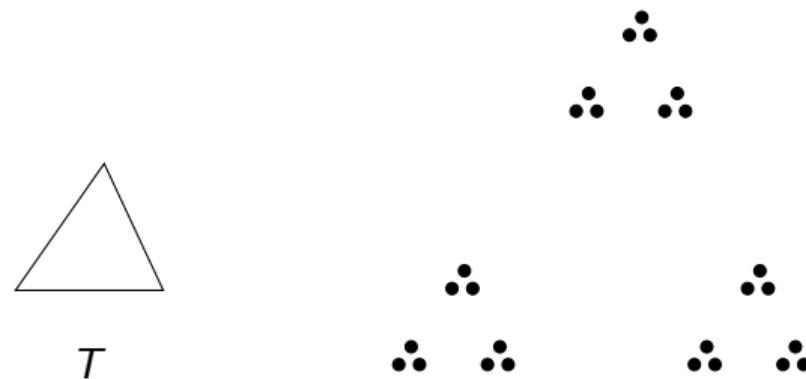


T_1 and T_2 are *ε -similar* if their inner angles differ by at most ε .
(OK to move, scale, rotate, ε -perturb)

LOWER BOUND CONSTRUCTION

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon > 0$ fixed)

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?



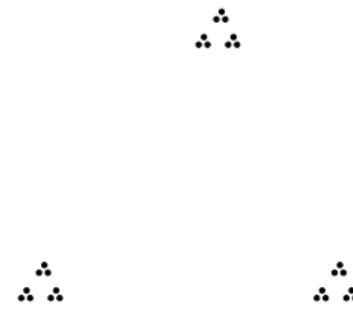
$h(n, T, \varepsilon) := \max \# \text{ of } \varepsilon\text{-similar triangles to } T$, it is at least $\frac{1}{4} \binom{n}{3} (1 + o(1))$.

LOWER BOUND CONSTRUCTION

Let T be a triangle and $n \in \mathbb{N}$ fixed. (and $\varepsilon > 0$ fixed)

Which n points in \mathbb{R}^2 maximize the number of triangles similar to T ?

T



$h(n, T, \varepsilon) := \max \# \text{ of } \varepsilon\text{-similar triangles to } T$, it is at least $\frac{1}{4} \binom{n}{3} (1 + o(1))$.

RESULTS

THEOREM (BÁRÁNY AND FÜREDI (2019))

For almost every triangle T there is an $\varepsilon_0 > 0$ such that for all $0 < \varepsilon \leq \varepsilon_0$,

$$h(n, T, \varepsilon) \leq 0.25072 \binom{n}{3} (1 + o(1)).$$

If T is equilateral, then $h(n, T, \varepsilon) = \frac{1}{4} \binom{n}{3} (1 + o(1))$

THEOREM (BALOGH, CLEMEN, L. (2022))

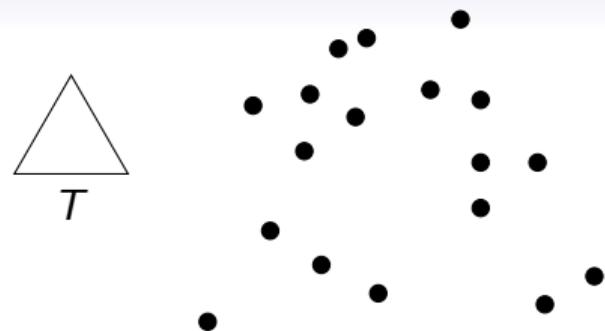
For almost every triangle T there is an $\varepsilon_0 > 0$ such that for all $0 < \varepsilon \leq \varepsilon_0$,

$$h(n, T, \varepsilon) = \frac{1}{4} \binom{n}{3} (1 + o(1)).$$

$h(n, T, \varepsilon) := \max \# \text{ of } \varepsilon\text{-similar triangles to } T, \text{ it is at least } \frac{1}{4} \binom{n}{3} (1 + o(1)).$

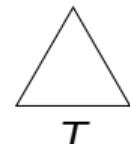
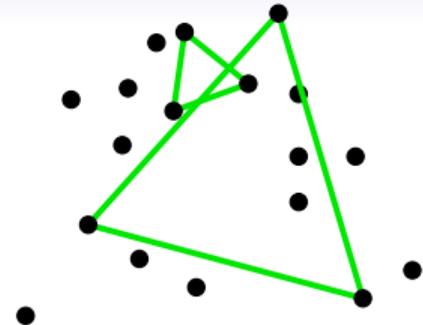
Let T and ε are given

- Fix n points in the plane.
- For every T' ε -similar to T , add a 3-edge
- Investigate the resulting hypergraph H
 H has no subhypergraph in $\mathcal{F} = \{K_4^3, \dots\}$



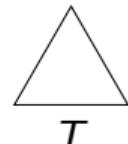
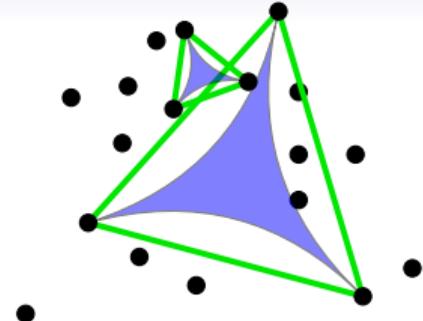
Let T and ε are given

- Fix n points in the plane.
- For every T' ε -similar to T , add a 3-edge
- Investigate the resulting hypergraph H
 H has no subhypergraph in $\mathcal{F} = \{K_4^3, \dots\}$



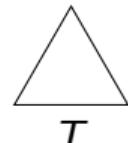
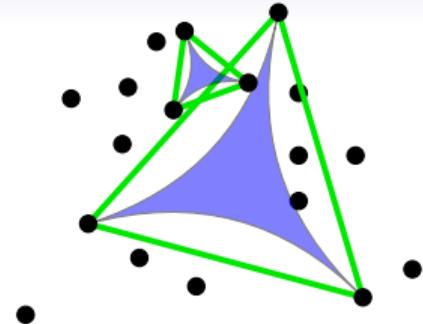
Let T and ε are given

- Fix n points in the plane.
- For every T' ε -similar to T , add a 3-edge
- Investigate the resulting hypergraph H
 H has no subhypergraph in $\mathcal{F} = \{K_4^3, \dots\}$



Let T and ε are given

- Fix n points in the plane.
- For every T' ε -similar to T , add a 3-edge
- Investigate the resulting hypergraph H
 H has no subhypergraph in $\mathcal{F} = \{K_4^3, \dots\}$

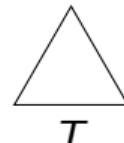
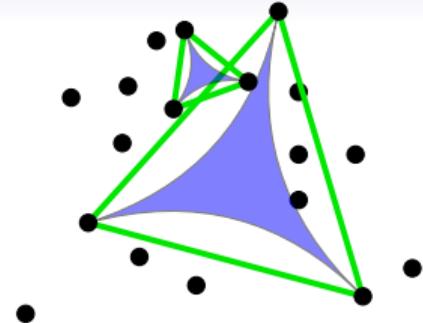


THEOREM (BALOGH, CLEMEN, L. (2022))

\mathcal{F} -free hypergraph has at most $\frac{1}{4} \binom{n}{3} (1 + o(1))$ edges.

Let T and ε are given

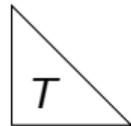
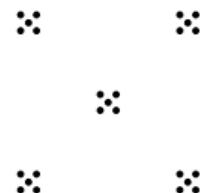
- Fix n points in the plane.
- For every T' ε -similar to T , add a 3-edge
- Investigate the resulting hypergraph H
 H has no subhypergraph in $\mathcal{F} = \{K_4^3, \dots\}$



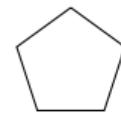
THEOREM (BALOGH, CLEMEN, L. (2022))

\mathcal{F} -free hypergraph has at most $\frac{1}{4} \binom{n}{3} (1 + o(1))$ edges.

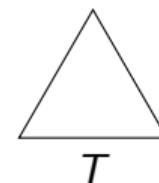
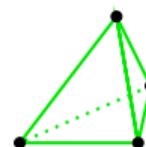
All triangles?



Other Shapes?



in \mathbb{R}^d ?



Counting k -SAT functions

QUESTION

Count functions

$$f : \{0, 1\}^n \rightarrow \{0, 1\} \quad 2^{2^n}$$

k-SAT FUNCTION can be defined as

$$f(x_1, \dots, x_n) = C_1 \vee C_2 \vee \dots \vee C_m$$

$$C_i = \underbrace{z_1 \wedge z_2 \wedge \dots \wedge z_k}_{\text{all different variables}} \quad z_i \in \{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}$$

x_i variable, C_i clause, z_i literal

example $k = 3$

$$x_1 \wedge x_2 \rightarrow (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge \neg x_3)$$

$$x_1 \wedge x_2 \wedge \neg x_2 \rightarrow \text{always false}$$

Every k -SAT function has a formula but the formula may not be unique.

number of $f : \{0, 1\}^n \rightarrow \{0, 1\}$ 2^{2^n}

number of k -SAT formula $2^{2^k \binom{n}{k}}$

number of k -SAT functions?

k -SAT formula is *monotone* if it uses only x_1, x_2, \dots, x_n , (i.e. no $\neg x_i$ is used)

All monotone k -SAT formula give different functions

$$g \notin x_1 \wedge \dots \wedge x_k \ni f \quad f \neq g \text{ at } x_1 = \dots = x_k = 1, x_{k+1} = \dots = x_m = 0$$

Number of monotone k -SAT functions $2^{\binom{n}{k}}$

k -SAT formula is *unate* if it uses at most one of $\{x_i, \neg x_i\} = \{x_i, \bar{x}_i\}$

Number of unate k -SAT functions $(1 + o(1))2^{n + \binom{n}{k}}$

Functions avoiding x_i counted multiple times

CONJECTURE (BOLLOBÁS, BRIGHTWELL, LEADER 2003)

Fix $k \geq 2$, $1 - o(1)$ fraction of k -SAT functions are unate as $n \rightarrow \infty$. $(1 + o(1))2^{n+{n \choose k}}$

- # 2-SAT functions is $2^{(1+o(1))\binom{n}{2}}$. Bollobás, Brightwell, Leader 2003 using Szemerédi regularity lemma
- Conjecture true for $k = 2$ Allen 2007 using Szemerédi regularity lemma
- Conjecture true for $k = 2$ Ilinca, Kahn 2009 without Szemerédi regularity lemma
- Conjecture true for $k = 3$ Ilinca, Kahn 2012 using hypergraph regularity lemma
- Conjecture true for $k = 4, 5$ Dong, Mani, Zhao 2022

Conjecture true for all k :-) Balogh, Dong, Lidický, Mani, Zhao

- Step 1: Reduction to a Turán type problem

Dong, Mani, Zhao using blow-up, saturation, container method

- Step 2: Solving the extremal problem

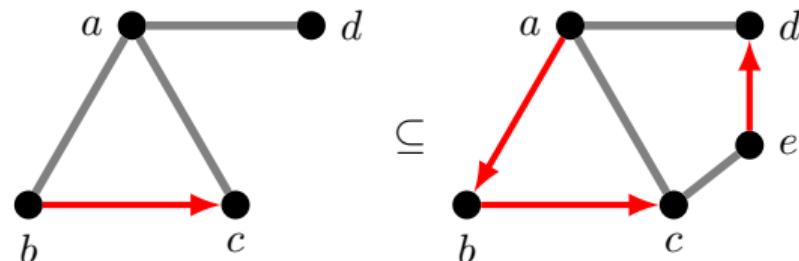
Balogh, Dong, L., Many, Zhao: computer free flag-algebra

DIRECTED HYERGRAPH TURÁN PROBLEM

Partially directed k-graph is a k -uniform hypergraph, where every edge is

- undirected
- rooted at one vertex (directed towards one vertex)

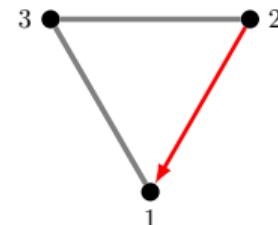
$\vec{H} \subseteq \vec{G}$ if \vec{H} could be obtained from \vec{G} by removing some vertices, edges, or orientations.



\vec{T}_k

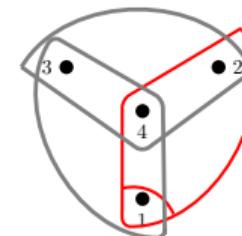
- $\vec{T}_2 = \{\hat{1}2, 13, 23\}$

① ② ③
-1- 2- ...
-1- 3-
..... 2- 3-



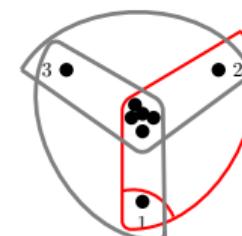
- $\vec{T}_3 = \{\hat{1}24, 134, 234\}$

① ② ③ ④
-1- 2- ... 4-
-1- 3- 4-
..... 2- 3- 4-



- $\vec{T}_k = \{\hat{1}24 \cdots k+1, 134 \cdots k+1, 234 \cdots k+1\}$

① ② ③ ④ ⑤
-1- 2- ... 4- 5-
-1- 3- 4- 5-
..... 2- 3- 4- 5-



EXTREMAL PROBLEM

G is k -uniform, n -vertex, \vec{T}_k -free.

$$\alpha := \frac{e_{\text{undirected}}(G)}{\binom{n}{k}}$$

$$\beta := \frac{e_{\text{directed}}(G)}{\binom{n}{k}}$$

Given k, θ , what is

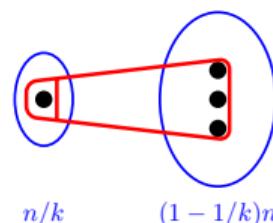
$$\max\{\alpha + \theta\beta\}?$$

Special (open) case:

Show $\alpha + \theta\beta \leq 1$ when $1 \leq \theta \leq \left(1 - \frac{1}{k}\right)^{1-k} \approx e$

Constructions:

Complete undirected graph



CONJECTURE (BOLLOBÁS, BRIGHTWELL, LEADER 2003)

Fix $k \geq 2$, almost all k -SAT functions are unate.

THEOREM (DONG, MANI, ZHAO)

If $\alpha + \theta\beta \leq 1$ for some $\theta > \log_2 3$ then almost all k -SAT functions are unate.

This theorem is a lot of work. Uses hypergraph containers by Balogh, Morris, Samotij; Saxton, Thomasson (AMS Steele prize 2024)

THEOREM (DONG, MANI, ZHAO)

Conjecture true for $k \leq 5$.

THEOREM (BALOGH, DONG, LIDICKÝ, MANI, ZHAO)

Conjecture true for all k .

PROOF FOR $k \geq 4$ USING FLAG ALGEBRAS

If graphs represent densities as

$$\bullet \underset{-1-}{\cdots} \bullet \underset{-2-}{\cdots} \bullet \underset{-3-}{\cdots} \bullet \underset{-4-}{\cdots} = \alpha := \frac{e_{\text{undirected}}(G)}{\binom{n}{k}}$$

$$\bullet \underset{-1-}{\cdots} \bullet \underset{-2-}{\cdots} \bullet \underset{-3-}{\cdots} \bullet \underset{-4-}{\cdots} = \beta := \frac{e_{\text{directed}}(G)}{\binom{n}{k}}$$

then

$$\begin{aligned}
 & \alpha + \theta\beta \\
 &= \bullet \underset{-1-}{\cdots} \bullet \underset{-2-}{\cdots} \bullet \underset{-3-}{\cdots} \bullet \underset{-4-}{\cdots} + \theta \bullet \underset{-1-}{\cdots} \bullet \underset{-2-}{\cdots} \bullet \underset{-3-}{\cdots} \bullet \underset{-4-}{\cdots} \\
 &\leq \bullet \underset{-1-}{\cdots} \bullet \underset{-2-}{\cdots} \bullet \underset{-3-}{\cdots} \bullet \underset{-4-}{\cdots} + \theta \bullet \underset{-1-}{\cdots} \bullet \underset{-2-}{\cdots} \bullet \underset{-3-}{\cdots} \bullet \underset{-4-}{\cdots} + \left[(a \underset{\boxed{1}}{\cdots} \underset{\boxed{2}}{\cdots} \underset{\boxed{3}}{\cdots} \bullet - b \underset{\boxed{1}}{\cdots} \underset{\boxed{2}}{\cdots} \underset{\boxed{3}}{\cdots} \bullet \underset{-4-}{\cdots})^2 \right] \\
 &\leq 1
 \end{aligned}$$

$$\text{for } \theta = 1 + \frac{1}{\sqrt{2}} \geq 1.707 > \log_2 3 \quad a = \frac{1}{\sqrt{2}}, b = \frac{k(\theta-1)-1}{\sqrt{2}} \quad k \geq 4$$

PROOF FOR $k = 2$ AND $k = 3$

$$1 \underset{-1-2-}{\bullet\bullet} + 1.7 \underset{-1-2-}{\bullet\bullet} + \left[\left[\left(-1 \underset{-1-}{\boxed{1}} \underset{-2-}{\bullet} - 1 \underset{-1-}{\boxed{1}} \underset{-2-}{\bullet} + 0.98 \underset{\square}{1} \bullet \right)^2 \right] \right] \leq 1$$

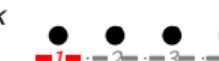
$$1 \underset{-1-2-3-}{\bullet\bullet\bullet} + 1.7 \underset{-1-2-3-}{\bullet\bullet\bullet} + 0.039 \times \left[\left[\left(-6 \underset{-1-2-3-}{\boxed{1}\boxed{2}} \underset{-3-}{\bullet} - 5 \underset{-1-2-3-}{\boxed{1}\boxed{2}} \underset{-3-}{\bullet} + 5 \underset{\square}{1} \underset{\square}{2} \bullet \right)^2 \right] \right] \leq 1$$

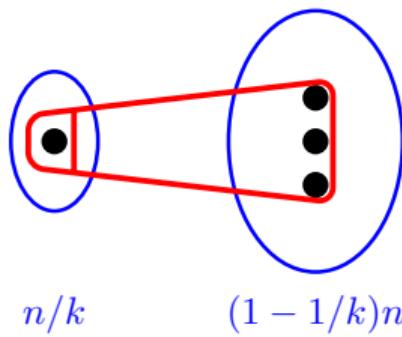
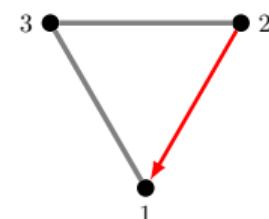
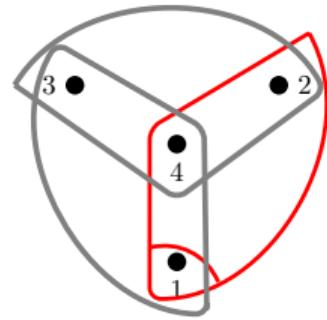
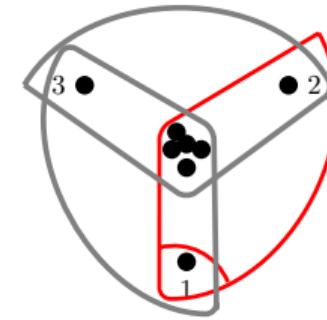
FUTURE DIRECTIONS

THEOREM (BALOGH, DONG, LIDICKÝ, MANI, ZHAO)

If \vec{T}_k is forbidden, then + $\left(1 + \frac{1}{\sqrt{2}}\right)$ ≤ 1 for all k .

QUESTION

If \vec{T}_k is forbidden, then + $\left(1 - \frac{1}{k}\right)^{1-k}$  ≤ 1 for all k ?



Temporary page!

\LaTeX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will go away, because \LaTeX now knows how many pages to expect for this document.