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Flag Algebras and Its Application

We will only consider large graphs (or networks).
Here is a graph of the internet from a while back to show there are large graphs that are
interesting.
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INSPIRATIONAL PROBLEM

® Let n be a fixed number of vertices in a graph G. edge isI
* Assume G has m edges. € [0, (3)]

. . . n triangle is v
® What is the number of triangles in G? € [0, (3)]

Liu, Pikhurko, Staden 2020 (144 pages)

Consider n — oo.
# Edges = p(5)

# Triangles = t(3)
Now p, t € [0, 1].

Upper bound p3/2 Kruskal-Katona 1964
Asymptotic lower bound by Razborov 2008 )

o
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I—Inspirational Problem

The edge (0,0) to (1/2,0) is Mantel's theorem.
is exaggerated to show the idea if the shape.

The sharp points are Turdn graphs.

The figure



FLAG ALGEBRAS

Seminal paper:

Razborov, Flag Algebras, Journal of Symbolic Logic 72
(2007), 1239-1282.

David P. Robbins Prize by AMS for Razborov in 2013 over
300 citations (on Google)

EXAMPLE
If density of edges is p, what is the minimum density of triangles?
® Designed to attack extremal problems.

e Works well if constraints as well as desired value can be computed by checking small
subgraphs (or average over small subgraphs).

® The results are for the limit as graphs get very large.



EXAMPLE EXTREMAL PROBLEM

WANTED

THEOREM (MANTEL 1907) 1
Every n-vertex triangle-free graph contains at most %nz edges.

PROBLEM
Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

® local condition and global parameter (computable locally)
e threshold

® bound and extremal example



PROOF OF MANTEL’S THEOREM

THEOREM (MANTEL 1907)

: 1,2
In every n-vertex triangle-free graph |E| < zn

PROOF.
d)?  4|E]?
n|E|ZZ d—l—d Zd2 IEV ) _ ||
UGET icv n

Cauchy-Schwarz (>, a,-b,-)2 <Y a2 -3 b2 with by =1
Cauchy-Schwarz (3, a,-1)2 <y a2z
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L Proof of Mantel’s Theorem

|E| is number of edges
d; is a degree of a vertex i. d; + d; < n because the graph is triangle-free.

We will try to rewrite the proof using densities and this should get us familiar with flag algebras
notation.



FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.

A\V4 #7/().
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The last click the = 1 is for audience participation.




FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.

#\7/(3)-

The probability that three random vertices in G span exactly two
v edges. #\//(g’)



2025-12-12

Flag Algebras and Its Application
LFlag; Algebras

I—Flag algebras definitions

The last click the = 1 is for audience participation.




FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.
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FLAG ALGEBRAS DEFINITIONS

Let G be a graph on n vertices.

The probability that three random vertices in G span a triangle, i.e.

#\7/(3)-

The probability that three random vertices in G span exactly two

N
v edges. #\//(3)-

The probability that a random vertex other than is adjacent to
— deg(m)/(n - 1).

[+ -

Flags




2025-12-12

Flag Algebras and Its Application
LFlag; Algebras

I—Flag algebras definitions

The last click the = 1 is for audience participation.
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THEOREM (MANTEL 1907)

; 1.2
In every n-vertex triangle-free graph |E| < zn”.
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jeE n eV iev iev
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THEOREM (MANTEL 1907)
In every n-vertex triangle-free graph |E| < %n2. lfv =0 then I <1

PIE|>nY (di+d)=> 12 d?> (D 1-di)* =4[E]

jeE n eV iev iev

2

"XI>Z Z<l>2z Z-n :4<I"2

meVv @ev @TeVv
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We are ignoring lower order terms and approximate (}) by

n

k!*




RIE[>nY (di+d)=> 123 > (D 1-di)? = 4|E]

jeE <n Vv ieVv ieVv
2
1 1 1 2 1 2
2
B z() Ly I
mev mev mev

% Z ev f= [[fﬂ
Cauchy-Schwarz: [f2] - [g?] > [f - g]°. In particular, [f?] > 0.



RIE[>nY (di+d)=> 123 > (D 1-di)? = 4|E]

jEE icv iev iev
2
191 1 ‘(1 ?
2
1> = A > | - a - =
i alis (D) :(ixe]] -]
mev meVv mev

L (1] =1 T

% Z ev f= [[fﬂ
Cauchy-Schwarz: [f2] - [g?] > [f - g]°. In particular, [f?] > 0.



1= [1]

= not choosing anything = 1

l = probability of choosing a vertex ...deg(m@)/(n— 1)

= probability of choosing two distinct vertices ... (

degé))/(

n—1
2

)
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Probability of choosing a vertex inducing an edge with the fixed vertex 1.
Probability of choosing a pair of distinct vertices each being in an edge with the fixed vertex 1.
Notice on the left each pair of vertices counted twice!

We will ignore o(1) in the future



v = probabilit
ility of choosing two distinct vertices . (deg())/("fl)
2 2

> v<n1> :#v

meVv

v = probability of i isti
y of choosing three distinct vertices . .. #V/(”)
3
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v = probabilit
ility of choosing two distinct vertices . (deg())/("fl)
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]E|:% d1+d 2433
ARV

n\ _ 1.—. n 4 g.—. n . E.—. n
2) " n e \3 n e \3 n e \3
I: probability of choosing an edge ... |E|/(5)

*—
= probability of choosing an triple ... # /(5)
[ ] [ ]
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PROOF RECAP
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AUTOMATED APPROACH

<1 1(1-2) =;°.°+;°7+;v
ST

In general as sum of squares

f<f+Z[[h2]]— ZCG G < max cg

GEF"

f, g linear combination of flags
Fn ...flags on n vertices
SOS proofs can be optimized by semidefinite programming



SUM OF SQUARES

B[N B otV E

In general as sum of squares

N~

f<f+Z[[h2]]— ZCG G < max cg

GeFn

Semidefinite matrix

° 2 o\ T
< |+ , , :E c -G < max ¢
I_I ( ) <C b) ( ) & Ger, M
N—— n



SUM OF SQUARES

B[N B otV E

In general as sum of squares

f<f+Z[[h2]]— ZCG G < max cg

GeFn

Semidefinite matrix

1)1 9 (1a) ) - g momes

N~

min max cg m
M>0 GeF,
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L Sum of squares

Make the subscript of Max under




Rainbow Triangles
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Rainbow Triangles


https://arxiv.org/abs/2511.21061

JOINTS

Joint in R? is a point where d lines that span R intersect.
What is the maximum number of joints for N lines?

THEOREM (CHAO AND HANS YU 2023+)

Number of joints is maximized by k hyperplanes whose intersection give N = (
lines and (5) joints.

Assymptotically by Hans Yu and Zhao 2023.

k
d-1

)



JOINTS

Joint in R? is a point where d lines that span R intersect.

What is the maximum number of joints for N lines?

THEOREM (CHAO AND HANS YU 2023+)

Number of joints is maximized by k hyperplanes whose intersection give N = (
lines and (5) joints.

Assymptotically by Hans Yu and Zhao 2023.

Multijoint problem: In R3, lines of three colors, maximize rainbow joints.
hyperplane — vertex

intersection of hyperplanes — edge
joint — rainbow triangle

THEOREM (CHAO AND HANS YU 2024+)

In 3-edge colored graph <#°7)2 <2 (#D - <#:> - <#D

k
d-1

)



JOINTS

Multijoint problem: In R3, lines of three colors, maximize rainbow joints.

hyperplane — vertex
intersection of hyperplanes — edge
joint — rainbow triangle

THEOREM (CHAO AND HANS YU 2024+)

P (41
In 3-edge colored graph (#7) <2 <#I> (#.> <#I>
In flag algebras , .
(7)< 1]

Automated sum-of-squares proof needs 540GB RAM
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L Joints

Motivation is for joins - one take lined colored reg, green and blue and asks for
Their proof uses entropy method.

1,601,952 configurations and 540GB ram

rainbow lines.



BALoGH, BRADSHAW, GARCIA, L. 2025+
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I—Balogh, Bradshaw, Garcia, L. 2025+

Can be written without flags, a simple counting proof.




THEOREM (CHAO AND HANS YU 2024+)

THEOREM (BALOGH, BRADSHAW, GARCIA, L.

2025+)
21 (L

We also have exactness and translation to counting and a short entropy proofs.

20
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We also have exactness results.




FURTHER DIRECTIONS

QUESTION

Let G be a graph with edges colored by colors {1,...,6}. Denote by C; the number of
edges colored by color i. Let H be the number of rainbow copies of Ky in G. Is it true

that H < Y/, G?

21



2025-12-12

Flag Algebras and Its Application
I—Flag Algebras

I—Further Directions

We note how to do it for a fixed rainbow coloring

FURTHER DIRECTIONS




Mathematical Biology

99



PHYLOGENY

How do we reconstruct an evolutionary history (phylogeny) from observations of living

species from characters?

Spine | Fur | Fins | Wings
Seal 1 1 1 0
Dog 1 1 0 0
Lizard 1 0 0 0
Butterfly 0 0 0 1
Worm 0 0 0 0

99



PHYLOGENY

C1 o c3 C4
ss]1 1 1 0
2|1 1 0 0 “162 €3 G
ss/1 0 0 O
s/ 0 0 0 1
ss| 0 0 0 O
1)1
()
[1]1]1]of[1]1

241



ASSUMPTIONS AND PROBLEMS

Perfect phylogeny model is fundamental, but inaccurate

LEMMA (THREE-GAMETE CONDITION, HUDSON-KAPLAN ’85)

A set of species and characters has a perfect phylogeny if and only if for every pair of
traits, no three species present all of the combinations 10,01, 11.

‘ Spine ‘ Fins ‘ Spine ‘ Wings
Seal 1 1 Bird 1 1
Lizard 1 0 Lizard 1 0

Butterfly 0 0 Butterfly 0 1

95



INCIDENCE GRAPH

Spine | Fur | Fins | Wings
Seal 1 1 1 0
Dog 1 1 0 0 ; ;
Lizard 1 0 0 0 ‘ Lizard ‘ ‘ Fms‘
Butterfly 0 0 0 1 -
Worm 0 0 0 0 ‘ Butterfly H Wings ‘
CLAIM

The incidence graph contains no induced copies of )Q( )Q( if and only if the

three-gamete condition is satisfied

26



MAIN PROBLEM

PROBLEM
How many induced copies of M = 8 8 can we possibly have?

Counting M measures how far from perfect.

® Inducibility problem in red-blue graphs
® Bipartite graphs with fixed two-colorings

® Isomorphisms are graph isomorphisms and preserve colors

7



RESULTS

THEOREM (EULENSTEIN, HALFPAP, L., MIYASAKI, PFENDER, VOLEC
2025+)

Fix ac > 0. Let G, be a red-blue graph with r red vertices and b blue vertices with

% = . Then
AR

CorOLLARY (EHLMPYV)

If G, is a red-blue graph on n vertices then

22345
#;%é% < 155 + o(n°).

IR



ASYMPTOTIC EXTREMAL EXAMPLES

FIGURE: Gg(r, b)

FIGURE: Gg(n)



FUTURE DIRECTIONS

® Determine lower-order terms and stronger characterizations
V3 Vi

24
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-similar Triangles


https://arxiv.org/abs/2101.10304

PROBLEM

Let T be a triangle and n € N fixed.
Which n points in R? maximize the number of triangles similar to T?

°
o ®
° ° ¢ g
°
o
° °
T
°
°
°
°
°

Ty and T, are e-similar if their inner angles differ by at most .

(OK to move, scale, rotate, e-perturb) 5
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PROBLEM

Let T be a triangle and n € N fixed. (and € > 0 fixed)
Which n points in R? maximize the number of triangles similar to T?

Ty and T, are e-similar if their inner angles differ by at most .
(OK to move, scale, rotate, e-perturb)

2A



PROBLEM

Let T be a triangle and n € N fixed. (and € > 0 fixed)
Which n points in R? maximize the number of triangles similar to T?

Ty and T, are e-similar if their inner angles differ by at most .
(OK to move, scale, rotate, e-perturb)

2A



LOWER BOUND CONSTRUCTION

Let T be a triangle and n € N fixed. (and £ > 0 fixed)
Which n points in R? maximize the number of triangles similar to T?

h(n, T,€) := max # of e-similar triangles to T, it is at least 7 (5)(1 + o(1)).

27



LOWER BOUND CONSTRUCTION

Let T be a triangle and n € N fixed. (and £ > 0 fixed)
Which n points in R? maximize the number of triangles similar to T?

/\

T

h(n, T,€) := max # of e-similar triangles to T, it is at least 7 (5)(1 + o(1)).

27



RESULTS

THEOREM (BARANY AND FUREDI (2019))
For almost every triangle T there is an €y > 0 such that for all 0 < € < g,

h(n, T,e) < 0.25072 <g> (1+ o(1)).

If T is equilateral, then h(n, T,e) = (3)(1 + o(1))
THEOREM (BALoGH, CLEMEN, L. (2022))

For almost every triangle T there is an €9 > 0 such that for all 0 < € < &g,

1

h(n, T,e) = ; (g) (1+ o(1)).

h(n, T,e) := max # of e-similar triangles to T, it is at least 7 (3)(1+ o(1)).

2



Let T and ¢ are given
® Fix n points in the plane.
® For every T’ e-similar to T, add a 3-edge
® |nvestigate the resulting hypergraph H

H has no subhypergaph in F = {K3,...}
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Let T and ¢ are given
® Fix n points in the plane.
® For every T’ e-similar to T, add a 3-edge
® |nvestigate the resulting hypergraph H

H has no subhypergaph in F = {K3,...}

THEOREM (BarLocH, CLEMEN, L. (2022))
F-free hypergraph has at most § (3)(1+ o(1)) edges.

20



Let T and ¢ are given
® Fix n points in the plane.
® For every T’ e-similar to T, add a 3-edge
® |nvestigate the resulting hypergraph H

H has no subhypergaph in F = {K3,...}

THEOREM (BarLocH, CLEMEN, L. (2022))
F-free hypergraph has at most § (3)(1+ o(1)) edges.

All triangles? Other Shapes?

in R9?

/\

T

20



Counting k-SAT functions
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QUESTION

Count functions
f:{0,1}" — {0,1} 2%

k-SAT FUNCTION can be defined as
f(Xl,...,X,,): GVvGV---VCy

C=zn1NzA--- Az zj € {x1, X1, X2, 7X2, . .., Xn, " Xn}

all different variables
x; variable, C; clause, z literal
example k =3
x1Ax2 = (x1 Axa Ax3)V (x1 A xe A —x3)

x1 A xo A —xp — always false
Every k-SAT function has a formula but the formula may not be unique.

A1



number of : {0,1}" — {0,1} 22"
number of k-SAT formula 22k(2)
number of k-SAT functions?

k-SAT formula is monotone if it uses only xi, x2, ..., X,, (i.e. no —x; is used)
All monotone k-SAT formula give different functions

gEXIN- - Axk>DF f#gatxy=-=xx=Lxky1 =" =xn=0
Number of monotone k-SAT functions 2(+)

k-SAT formula is unate if it uses at most one of {x;, =x;} = {x;, X}
Number of unate k-SAT functions (1 + o(l))2”+(:)

Functions avoiding x; counted multiple times

A9



CONJECTURE (BOLLOBAS, BRIGHTWELL, LEADER 2003)
Fix k > 2, 1 —o(1) fraction of k-SAT functions are unate as n — co. (1 + o(l))2”+(Z)

e 4 2.SAT functions is 2(1+°(1))(5). Bollobas, Brightwell, Leader 2003

using Szemerédi regularity lemma
® Conjecture true for k = 2 Allen 2007
using Szemerédi regularity lemma
e Conjecture true for k = 2 llinca, Kahn 2009
without Szemerédi regularity lemma
® Conjecture true for k = 3 llinca, Kahn 2012
using hypergraph regularity lemma
e Conjecture true for k = 4,5 Dong, Mani, Zhao 2022

Conjecture true for all k :-) Balogh, Dong, Lidicky, Mani, Zhao

A2



® Step 1: Reduction to a Turdn type problem
Dong, Mani, Zhao using blow-up, saturation, container method

® Step 2: Solving the extremal problem
Balogh, Dong, L,, Many, Zhao: computer free flag-algebra



DIRECTED HYERGRAPH TURAN PROBLEM

Partially directed k-graph is a k-uniform hypergraph, where every edge is
® undirected

® rooted at one vertex (directed towards one vertex)

H C G if H could be obtained from G by removing some vertices, edges, or
orientations.

( @) (] O @@ (|

N
)

A6
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EXTREMAL PROBLEM

G is k-uniform, n-vertex, fk—free.

e o 0 o — eundirected(G) e 0 0 o L edirected(G)
=1==0= =3= —4= & .= T D e ﬁ = T
Given k, 0, what is
max{«a + 05}7?

Special (open) case:

Show a + 08 < lwhen 1 <0< (1-1)" “~e
Constructions:
Complete undirected graph

n/k (1—=1/k)n



CONJECTURE (BOLLOBAS, BRIGHTWELL, LEADER 2003)
Fix k > 2, almost all k-SAT functions are unate.

THEOREM (DONG, MANI, ZHAO)
If a+ 65 <1 for some 6 > log, 3 then almost all k-SAT functions are unate.

This theorem is a lot of work. Uses hypergraph containers by Balogh, Morris, Samotij; Saxton,

Thomasson (AMS Steele prize 2024)

THEOREM (DONG, MANI, ZHAO)

Conjecture true for k <5.

THEOREM (BALOGH, DONG, LIDICKY, MANI, ZHAO)
Conjecture true for all k.

A0



PROOF FOR k > 4 USING FLAG ALGEBRAS

If graphs represent densities as

e 06 06 0 L eundirected(G) e o 0 o — o edirected(G)
A, V0. A SO A T D A SRy S p= T
k k
then
a+ 08
= %00 0900

<oopo+eooog+[[(ao—b°)2ﬂ

forg=1+ -1 >1.707 > logy3 a= 1,b:k(0_7\é)_1 k>4
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PROOF FOR k=2 AND k=3

1 e e 117 e @ +[[(—1

e 11

=T D

[ ]
-0

+098 @ o )°] <1

—5m @ e +5o)2ﬂ§1

=T ) =3
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FUTURE DIRECTIONS

THEOREM (BALOGH, DONG, LIDICKY, MANI, ZHAO)
If Ti is forbidden, then ® o o o <1+\%) o o o o <1forallk.

Do o G o e

QUESTION
If Ty is forbidden, then e o 0 | (1 %)l_k © o o o J1forallk?

Do o G o = o o Do o o

6 0)/

(1—1/k)n
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